بهره‌برداری همزمان از شبکه برق و گاز طبیعی با استفاده از مکانیزم معامله نظیر به نظیر انرژی الکتریکی

نوع مقاله : مقاله برق

نویسندگان

1 1. دانشجو دکتری مهندسی برق قدرت، دانشکده مهندسی برق، دانشگاه شهید بهشتی

2 2. استاد، دانشکده مهندسی برق، دانشگاه شهید بهشتی Peer to peer (P2P)

چکیده

معامله نظیر به نظیر (P2P) انرژی الکتریکی فناوری نوظهوری برای ادغام بهینه منابع تولید پراکنده (DERs) انرژی با سیستم قدرت می‌باشد. مکانیزم P2P امکان معامله همتا به همتا انرژی الکتریکی را به صورت محلی به مشترکان می‌دهد. DERs می‌توانند به صورت فعال در بازار روز بعد و بازار لحظه‌ای با اهداف گوناگون مشارکت نمایند. در این مقاله روش دو مرحله‌ای جهت بهره‌برداری همزمان از دو حامل انرژی برق و گاز طبیعی با در نظر گرفتن قابلیت پاسخ گویی بار (DR) و مکانیزم معامله P2P انرژی الکتریکی توسعه یافته است. در مرحله اول، روشی مبتنی بر بهینه‌سازی غیر خطی (MINLP) جهت برنامه‌ریزی همزمان دو حامل انرژی برق و گاز طبیعی با در نظر گرفتن پخش بار (AC) و قیود هیدرولیک شبکه گاز استفاده شده است. در ادامه، در مرحله دوم با استفاده از مکانیزم معامله P2P، مشترکان انرژی الکتریکی را مابین خود به صورت محلی معامله می‌کنند. همچنین، جهت افزایش سود ساکنان شبکه مورد مطالعه و شبیه‌سازی رفتار معامله‌گر انسان، در این مقاله از فرضیه معامله‌گر (ZIP) استفاده شده است. جهت اعتبار سنجی روش پیشنهادی در این مقاله، مدل مفروض بر روی شبکه توزیع 33 باسه استاندارد IEEE و شبکه گاز تنظیم شده با 33 گره پیاده شده است. نتایج شبیه‌سازی حاکی از آن است که استفاده از روش پیشنهادی در این مقاله موجب کاهش هزینه بهره‌برداری از شبکه مورد مطالعه و بهبود شاخص‌های فنی شبکه برق و گاز می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simultaneous operation of electricity and natural gas systems through the P2P energy trading mechanism

نویسندگان [English]

  • Meysam Feili 1
  • mameli mameli 2
1 Shahid Beheshti University, Department of Electrical Engineering, Tehran, Iran
2 Shahid Beheshti University, Department of Electrical Engineering, Tehran, Iran
چکیده [English]

P2P energy trading is a new technology for increasing the integration of DERs with the power system. This technology enables customers to locally trade energy with each other. The DERs can actively participate in the day ahead and real-time balancing markets. This paper proposes a new two-level framework for the integrated operation of the power and natural gas systems through P2P energy trading considering the demand response capability. In the first level, the optimal operation schedules of the customer are determined through the MINLP optimization problem considering the AC power flow and natural gas steady-state model. In the following (level two), the customers trade energy with each other through the P2P framework. In order to increase the customers' profits and simulate the human trader behaviors, we employed the ZIP trader assumption in the proposed framework. In order to evaluate the introduced framework, it is implemented on the standard IEEE 33 bus test system and 33-node modified gas network. The results of the numerical study revealed that the proposed method can dramatically reduce the total operation cost

کلیدواژه‌ها [English]

  • natural gas
  • minlp
  • P2P energy trading
  • AC power flow
  • demand response
  • DERs
]1[ لطیفی، حسین، محمد ابراهیم حاجی آبادی، و مهدی صمدی. " ارائه یک رویکرد چند هدفه فازی برای بازآرایی دینامیکی شبکه توزیع در حضور واحدهای تولید پراکنده و سیستم های ذخیره انرژی". 71،20 (1401): 175-188.
[2] Wang, Chengshan, Jianzhong Wu, Janaka Ekanayake, and Nick Jenkins. Smart electricity distribution networks. CRC Press, 2017.
[3] Qiu, Jing, Junhua Zhao, Hongming Yang, and Zhao Yang Dong. "Optimal scheduling for prosumers in coupled transactive power and gas systems." IEEE Transactions on Power Systems 33, no. 2 (2017): 1970-1980.
[4] Shi, Zhichao, Hao Liang, Shengjun Huang, and Venkata Dinavahi. "Distributionally robust chance-constrained energy management for islanded microgrids." IEEE Transactions on Smart Grid 10, no. 2 (2018): 2234-2244.
]5[ قاسمی، و گلنام کریمی. " ارائه مدلی جدید برای مدیریت بهینه انرژی یک ریزشبکه مسکونی با هدف بهبود شاخص های تاب آوری و انعطاف پذیری". 70،20 (1401): 61-77.
[6] Mei, H., Y. P. Li, C. Suo, Y. Ma, and J. Lv. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China." Applied Energy 262 (2020): 114568.
]7[ فرهادی، علیرضا، ابوالفضل حاجی زاده اقدم، و ابوالفضل محمد ابراهیم. " تحلیل و شبیه سازی مشعل های اتمسفریک هیترهای ایستگاه تقلیل فشار گاز شهری". 71،20 (1401): 165-174.
[8] Forfia, David, Mark Knight, and Ron Melton. "The view from the top of the mountain: Building a community of practice with the gridwise transactive energy framework." IEEE Power and Energy Magazine 14, no. 3 (2016): 25-33.
[9] Feili, Meysam, and Mohammad Taghi Ameli. "Integrated operation of gas and power system through the P2P market mechanism." IET Smart Grid 6, no. 4 (2023): 359-379.
[10] Ge, Shaoyun, Jifeng Li, Xingtang He, and Hong Liu. "Joint energy market design for local integrated energy system service procurement considering demand flexibility." Applied Energy 297 (2021): 117060.
[11] Wang, Cheng, Wei Wei, Jianhui Wang, Feng Liu, and Shengwei Mei. "Strategic offering and equilibrium in coupled gas and electricity markets." IEEE Transactions on Power Systems 33, no. 1 (2017): 290-306.
[12] Chen, Yue, Wei Wei, Feng Liu, Enzo E. Sauma, and Shengwei Mei. "Energy trading and market equilibrium in integrated heat-power distribution systems." IEEE Transactions on Smart Grid 10, no. 4 (2018): 4080-4094.
[13] Chen, Yue, Wei Wei, Feng Liu, and Shengwei Mei. "A multi-lateral trading model for coupled gas-heat-power energy networks." Applied energy 200 (2017): 180-191.
[14] Basnet, Ashim, and Jin Zhong. "Integrating gas energy storage system in a peer-to-peer community energy market for enhanced operation." International Journal of Electrical Power & Energy Systems 118 (2020): 105789.
[15] Alvarez, Gonzalo Exequiel. "Integrated modeling of the peer-to-peer markets in the energy industry." (2022).
[16] Zhou, Wei, Yuying Wang, Feixiang Peng, Ying Liu, Hui Sun, and Yu Cong. "Distribution network congestion management considering time sequence of peer-to-peer energy trading." International Journal of Electrical Power & Energy Systems 136 (2022): 107646.
[17] Wang, Xiaoyu, Tao Xu, Yunfei Mu, Zibo Wang, Youjun Deng, Tao Zhang, Qian Jiang, Yaqing Zhang, and Hongjie Jia. "Congestion management under peer-to-peer energy trading scheme among microgrids through cooperative game." Energy Reports 8 (2022): 59-66.
[18] Xia, Yuanxing, Qingshan Xu, Haiya Qian, and Li Cai. "Peer-to-Peer energy trading considering the output uncertainty of distributed energy resources." Energy Reports 8 (2022): 567-574.
[19] Ali, Liaqat, S. M. Muyeen, Hamed Bizhani, and Arindam Ghosh. "A multi‐objective optimization for planning of networked microgrid using a game theory for peer‐to‐peer energy trading scheme." IET Generation, Transmission & Distribution 15, no. 24 (2021): 3423-3434.
[20] Wang, Zibo, Xiaodan Yu, Yunfei Mu, Hongjie Jia, Qian Jiang, and Xiaoyu Wang. "Peer-to-Peer energy trading strategy for energy balance service provider (EBSP) considering market elasticity in community microgrid." Applied Energy 303 (2021): 117596.
[21] Hashemipour, Naser, Pedro Crespo del Granado, and Jamshid Aghaei. "Dynamic allocation of peer-to-peer clusters in virtual local electricity markets: A marketplace for EV flexibility." Energy 236 (2021): 121428.
[22] Davoudi, Mehdi, and Moein Moeini‐Aghtaie. "Local energy markets design for integrated distribution energy systems based on the concept of transactive peer‐to‐peer market." IET Generation, Transmission & Distribution 16, no. 1 (2022): 41-56.
[23] Amin, Waqas, Qi Huang, Khalid Umer, Zhenyuan Zhang, M. Afzal, Abdullah Aman Khan, and Syed Adrees Ahmed. "A motivational game-theoretic approach for peer-to-peer energy trading in islanded and grid-connected microgrid." International journal of electrical power & energy systems 123 (2020): 106307.
[24] Khalid, Rabiya, Nadeem Javaid, Ahmad Almogren, Muhammad Umar Javed, Sakeena Javaid, and Mansour Zuair. "A blockchain-based load balancing in decentralized hybrid P2P energy trading market in smart grid." Ieee Access 8 (2020): 47047-47062.
[25] Guerrero, Jaysson, Archie C. Chapman, and Gregor Verbič. "Decentralized P2P energy trading under network constraints in a low-voltage network." IEEE Transactions on Smart Grid 10, no. 5 (2018): 5163-5173.
[26] Liu, J., H. Yang, and Y. Zhou, Peer-to-peer energy trading of net-zero energy communities with renewable energy systems integrating hydrogen vehicle storage. Applied Energy, 2021. 298 :p. 117206.
[27] Zheng, J. H., C. Q. Wu, J. Huang, Yang Liu, and Q. H. Wu. "Multi-objective optimization for coordinated day-ahead scheduling problem of integrated electricity-natural gas system with microgrid." IEEE Access 8 (2020): 86788-86796.
[28] Nguyen, Dinh Hoa, and Tatsumi Ishihara. "Distributed peer-to-peer energy trading for residential fuel cell combined heat and power systems." International Journal of Electrical Power & Energy Systems 125 (2021): 106533.
[29] Lai, Chun Sing, Mengxuan Yan, Xuecong Li, Loi Lei Lai, and Yang Xu. "Coordinated operation of electricity and natural gas networks with consideration of congestion and demand response." Applied Sciences 11, no. 11 (2021): 4987.
[30] Fang, Fang, Qing H. Wang, and Yang Shi. "A novel optimal operational strategy for the CCHP system based on two operating modes." IEEE Transactions on power systems 27, no. 2 (2011): 1032-1041.
[31] Shabazbegian, Vahid, Hossein Ameli, Mohammad Taghi Ameli, Goran Strbac, and Meysam Qadrdan. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach." Applied Energy 284 (2021): 116284.
[32] Osiadacz, Andrzej. "Simulation and analysis of gas networks." (1987).
[33] Jiang, Yibo, Jian Xu, Yuanzhang Sun, Congying Wei, Jing Wang, Siyang Liao, Deping Ke, Xiong Li, Jun Yang, and Xiaotao Peng. "Coordinated operation of gas-electricity integrated distribution system with multi-CCHP and distributed renewable energy sources." Applied energy 211 (2018): 237-248.
[34] Guerrero, Jaysson, Archie Chapman, and Gregor Verbic. "A study of energy trading in a low-voltage network: Centralised and distributed approaches." In 2017 Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6. IEEE, 2017.
[35] Yan, Xing, Jin Lin, Zechun Hu, and Yonghua Song. "P2P trading strategies in an industrial park distribution network market under regulated electricity tariff." In 2017 IEEE conference on energy internet and energy system integration (EI2), pp. 1-5. IEEE, 2017.
[36] Zhang, Shaomin, Miao Pu, Baoyi Wang, and Bin Dong. "A privacy protection scheme of microgrid direct electricity transaction based on consortium blockchain and continuous double auction." IEEE access 7 (2019): 151746-151753.
[37] Zhou, Yue, Jianzhong Wu, Guanyu Song, and Chao Long. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community." Applied Energy 278 (2020): 115671.
[38] Cliff, Dave, and Janet Bruten. "Less than human: Simple adaptive trading agents for CDA markets." IFAC Proceedings Volumes 31, no. 16 (1998): 117-122.
[39] Shabazbegian, Vahid, Hossein Ameli, Mohammad Taghi Ameli, and Goran Strbac. "Stochastic optimization model for coordinated operation of natural gas and electricity networks." Computers & Chemical Engineering 142 (2020): 107060.