همزمان سازی مقاوم کلاس خاصی از سیستم های آشوبی هم تراز با وجود ، تاخیر زمانی و پارامتر ها ی نامشخص

نوع مقاله : مقاله برق

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی برق، دانشگاه آزاد اسلامی واحد گناباد

2 دانشکده مهندسی برق، دانشگاه آزاد اسلامی، گناباد

3 استادیار، دانشکده مهندسی برق، دانشگاه آزاد اسلامی واحد نیشابور

چکیده

دراین مقاله همزمان سازی سیستم های آشوبی همتراز با وجود اغتشاش، عدم قطعیت، پارامتر های نا معلوم و تاخیر های نا معلوم مورد بررسی قرار میگیرد. در ابتدا با استفاده از نمای لیاپانوف ، سیستم آشوبی همتراز معرفی شده، سپس کنترلر تطبیقی- مقاوم بر پایه تئوری پایداری لیاپانوف و شرط لیپ شیتز طراحی می شود. قوانین بروزرسانی تخمین کران های اغتشاش وعدم قطعیت و همچنین پارامترها و تاخیر‌های نامعلوم بگونه ای تعیین میشوند که همزمان‌سازی مقاوم سیستمهای آشوبی پایه و پیرو صورت گیرد. همچنین بر اساس پایداری لیاپانوف تضمین می‌گردد که کنترل‌کننده پیشنهادی منجر به همزمان‌سازی سیستم‌های آشوبی همتراز با وجود اغتشاش و نایقینی شود. در نهایت برای ارزیابی کنترل‌کننده تطبیقی-مقاوم پیشنهادی، همزمان سازی دو سیستم آشوبی همتراز جرک و جنسیوتسیو با عدم قطعیت غیرخطی کراندار و اغتشاش‌ های خارجی و همچنین تاخیرهای زمانی ثابت نامعلوم شبیه‌سازی شده‌اند. نتایج شبیه سازی‌ها، کارایی مطلوب کنترلر پیشنهادی برای همزمان سازی مقاوم سیستم های آشوبی همتراز را نشان می دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Robust synchronization of a class neutral chaotic systems Despite, unknown time-delay and parameter

نویسندگان [English]

  • Amirhosein Rostampour 1
  • Assef Zare 2
  • Majid Halaji 3
1 Department of electrical, Gonabad Branch, Islamic Azad University,Gonabad, Iran
2 Department of Electrical Eng. IAU of Gonabad
3 Faculty of Electrical Engineering, Neyshabure Branch, Islamic Azad University, Neyshabure 6518115743, Iran
چکیده [English]

The synchronization of neutral chaotic systems with disturbance, uncertainty, unknown parameters, and unknown delays is studied in this article. Initially, the neutral chaotic system is introduced using the Lyapunov exponent and then the adaptive-robust controller is designed using the Lyapunov stability theory and the Lipschitz condition. The update laws for the estimation of disturbance and uncertainty bounds, as well as unknown parameters and delays, are determined such that the chaotic master and slave systems are synchronized in a robust manner. In addition, Lyapunov stability guarantees that the proposed controller will synchronize neutral chaotic systems in the presence of disturbance and uncertainty. In order to assess the proposed adaptive-robust controller, the synchronization of two parallel chaotic systems, jerk and Genesio–Tesi, with bounded nonlinear uncertainty, external disturbances, and unknown constant time delays is simulated. The simulation results demonstrate that the proposed controller provides the best performance for robust synchronization of neutral chaotic systems.

کلیدواژه‌ها [English]

  • neutral chaotic systems
  • Adaptive robust Synchronization
  • unknown delay
  • unknown parameters
  • disturbance
  • uncertainty
[1] Kellert, Stephen H. "In the wake of chaos: unpredictable order in dynamical systems." Science and its conceptual foundations. University of Chicago Press, Chicago, 1993.
[2] E. N. Lorenz. “Deterministic non-periodic flow." Journal of the Atmospheric Sciences,  vol. 2, (1963): 130–141.
[3] V. G. Ivancevic and T. T. Ivancevic. " Complex nonlinearity: chaos, phase transitions. " topology change, and path integrals, Springer 2008.
[4] T. Yang. “A survey of chaotic secure." International Journal of Computational Cognition, vol. 2, (2004):81-130.
[5] B. Nana, P. Woafo and S. Domngan . "Chaotic synchronization with experimental application to secure communications." Communications in Nonlinear Science and Numerical Simulation, (2009): 2266–2276.
[6] C.S. Zhou, J. Kurths, E. Allaria, S. Boccaletti and R. Meucci. "Noise-enhanced synchronization of homoclinic chaos in a CO 2 laser." Physical Review E, no. 1 (2003): 015205.
[7] S. Vaidyanathan. "Adaptive synchronization of chemical chaotic reactors." International Journal of ChemTech Research, vol. 8, no. 2 (2015): 612-621.
[8] J.E. Skinner, M. Molnar, T. Vybiral and M. Mitra. "Application of chaos theory to biology and medicine." Integrative Physiological and Behavioral Science, vol. 27, no. 1 (1992): 39–53.
[9]   مجید محمدپور و حمید پروی. "الگوریتم کلونی زنبور مصنوعی آشوب‌گونه مبتنی بر حافظه برای حل مسائل بهینه‌سازی پویا."  مجله مدل سازی در مهندسی، 15، 51(1396): 113-132.
 [10] علی ابراهیمی، احمد حاجی پور و حمید رضا توکلی "موقیعت‌یابی در اینترنت اشیاء با استفاده از الگوریتم بهینه سازی ازدحام ذرات مرتبه کسری آشوبی" ، مجله مدل سازی در مهندسی، 18، 60(1399): 157-168.
[11] V. B. Kolmanovskiĭ . "Stability of functional differential equations. " London: Academic Press , 1986.
[12] X. Li and C. E. de Souza . "CRlTERlA FOR ROBUST STABILITY OF UNCERTAIN LINEAR." Department of Electrical and Computer Engineering, The University of NewcAStle, )1996:(  137–142.
[13] J. Kim. "Delay and its time-derivative dependent robust stability of time-delay linear systems with uncertainty." IEEE Trans. Automat, )2001:( 789–792.
[14] K. Gu. "A further refinement of descretized Lyapunov function method for the stability of time delay systems". International Journal of Control, )2001:( 967–976.
[15] D. Yue and S. Won. "An Improvement on delay and its time-derivative dependent robust stability of time-delay linear systems with uncertainty." IEEE TRANSACTIONS ON AUTOMATIC CONTROL, vol. 47,)2002(: 407–408.
[16] Q. L. Han. "On robust stability of neutral systems with time-varying discrete delay. " Automatica , vol. 40, (2004): 1087–1092.
[17] C. H. Lien and J.-D. Chen. “Discrete-delay-independent and discrete-delay-dependent criteria for a class of neutral systems." Journal of Dynamic Systems Measurement and Control, vol. 125, (2003): 33-41.
[18] J. H. Park and O. Kwon. "On new stability criterion for delay-differential systems of neutral type. " Applied Mathematics and Computation , vol. 62, (2005): 627–637.
[19] Y. He, M. Wu, J.-H. She and G.-P. Liu. "Delay-dependent robust stability criteria for uncertain neutral. " Systems & Control Letters , vol. 51, (2004): 57–65.
[20] W. Chartbupapan, O. Bagdasar and K. Mukdasai. "A Novel Delay-Dependent Asymptotic Stability Conditions for Differential and Riemann-Liouville Fractional Differential Neutral Systems with Constant Delays and Nonlinear Perturbation. " Mathematics, vol. 8, no. 82(2020): 1-10.
[21] Z. S. Aghaya, . A. Alfi and J. T. Machado. "Robust stability of uncertain fractional order systems of neutral type with distributed delays and control input saturation. " Journal Pre-proof, 2020.
[22] F. Du and J.-G. Lu. "Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities. " Applied Mathematics and Computation, vol. 375, (2020): 2-17.
[23] C. H. Lien and J.-D. Chen. "Discrete-delay-independent and discrete-delay-dependent criteria for a class of neutral systems. " Journal of Dynamic Systems Measurement and Control, vol. 125, (2003): 33-41.
[24] M. Liu, I. Dassios and F. Milano. "On the Stability Analysis of Systems of Neutral Delay Differential Equations. " Circuit Systems and Signal Processing , vol. 38, (2019): 1639–1653.
[25] T. Wu, L. Xiong, J. Cao and H. Zhang. "Stochastic stability and extended dissipativity analysis for uncertain neutral systems with semi-Markovian jumping parameters via novel free matrix-based integral inequality. " Robust Nonlinear Control, (2019): 1-21.
[26] W. Chen, S. Xu, Y. Li and Z. Zhang. "Stability analysis of neutral systems with mixed interval time-varying delays and nonlinear disturbances. " Journal of the Franklin Institute, 2020.
[27]    عبدالله عباسی و سمانه سادات آقا عمو."طراحی کنترل تطبیقی L1 برای پایدارسازی سیستمهای آشوبناک با وجود نامعینی در مدل."  مجله مدل سازی در مهندسی، 16، 52(1397): 171-181.
[28] ع. ابویی، م. ر. جاهد مطلق، م. م. عارفی و ز. رحمانی چراتی، "کنترل لغزشی- تطبیقی سیستم فوق آشوب لورنز با در نظر گرفتن عدم قطعیت، اغتشاش، ورودی های کنترلی غیر خطی و ناشناخته بودن پارامتر های سیستم" ، مجله کنترل، 4، 4(1373): 62-73 .
[29] M.T. Ziabari, A. Moarefianpur and M. Morvarid. "Fuzzy stability and synchronization of new 3D chaotic systems. " International Journal of Information Engineering and Electronic Business , vol. 6, no. 5 (2014): 53.
[30] A. Boulkroune, A. Bouzeriba and T. Bouden. "Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems. " Neurocomputing, vol. 173, (2016): 606-614.
[31] S. Vaidyanathan, V.T. Pham and C.K. Volos. "Adaptive Backstepping Control, Synchronization and Circuit Simulation of a Novel Jerk Chaotic System with a Quartic Nonlinearity. " in Advances and Applications in Chaotic Systems, Springer International Publishing, (2016): 109-135.
[32] S. Mohammadpour and T. Binazadeh. "Observer-based synchronization of uncertain chaotic systems subject to input saturation. " Transactions of the Institute of Measurement and Control, vol. 40, no. 8 (2017): 2526-2535.
[33] S. Mohammadpour and T. Binazadeh. "Robust adaptive synchronization of chaotic systems with nonsymmetric input saturation constraints. " Journal of Computational and Nonlinear Dynamics, vol. 13, no. 1(2018): 011005.
[34] L. Cao, and X. Chen. "Input–output linearization minimum sliding mode error feedback control for synchronization of chaotic system. " Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 229, no. 8 (2015): 685-699.
 [35] علی فیاضی, حسین احمدی نوبری و حسن فاتحی مرج. "همزمان سازی سیستم های مرتبه کسری آشوبی جنسیو تسی و کولت با استفاده از کنترل کننده تطبیقی مرتبه کسری."  مجله کنترل، دوره 5، 4(1393):1-11.
[36] H.T. Yau, S.Y. Wu, C.L. Chen and Y.C. Li. "Fractional-order chaotic self-synchronizationbased tracking faults diagnosis of ball bearing systems. " IEEE Transactions on Industrial Electronics, vol. 63, no. 6 (2016): 3824-3833.
[37] H. Jahanshahi, A. Yousefpour and J. M. Munoz-Pacheco. "A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: Dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method. " Appl. Soft Comput, vol. 87, (2020): 105943.
[38] F. Min, C. Li, L. Zhang and C. Li. "Initial value-related dynamical analysis of the memristor-based system with reduced dimensions and its chaotic synchronization via adaptive sliding mode control method. " Chin. J. Phys, vol. 58, (2019): 117–131.
[39] A. Khan and R. K. Shikha. "Combination synchronization of Genesio time delay chaotic system via robust adaptive sliding mode control. " Int. J. Dyn. Control, vol. 6, no. 2 (2018): 758–767.
[40] W. Tai, Q. Teng, Y. Zhou, J. Zhou and Z. Wang. "Chaos synchronization of stochastic reaction-diffusion time-delay neural networks via non-fragile output-feedback control. " Appl. Math. Comput, vol. 354, (2019): 115–127.
[41] Weiwei Zhang, Jinde Cao, Ranchao Wu, Fuad E. Alsaadi and Ahmed Alsaedi. "Lag Projective Synchronization of Fractional-Order Delayed Chaotic Systems. " Journal of the Franklin Institute, vol. 356, no. 3 (2018): 1522-1534.
[42] L. Wang, T. Dong and M.-F. Ge. "Finite-time synchronization of memristor chaotic systems and its application in image encryption. " Applied Mathematics and Computation, vol. 347, (2019): 293-305.
[43] O. MOFID, M. MOMENI, S. MOBAYEN and A. FEKIH. "A Disturbance-Observer-Based Sliding Mode Control for the Robust Synchronization of Uncertain Delayed Chaotic Systems. "IEEE Access, vol. 9, (2021): 16546-16555.
[44] Y. Xu, C. Xiea, D. Tong. "Adaptive synchronization for dynamical networks of neutral type with time-delay. " Optic, vol. 125, (2014): 2014380–385.
[45] Q. Zhu, W. Zhou, D. Tong, J. Fang. "Adaptive synchronization for stochastic neural networks of neutral-type with mixed time-delays. " Neurocomputing, vol. 99, (2013): 477–485.
[46] Z.S. Aghayan, A. Alfi, J.A.Tenreiro Machado. "Robust stability analysis of uncertain fractional order neutral-type delay nonlinear systems with actuator saturation. " Applied Mathematical Modelling, vol. 90, (2021): 1035–1048.
[47] Zare, Assef, Mirrezapour, Seyede Z, Hallaji, Majid, Shoeibi, Afshin, Jafari, Mahboobeh, Ghassemi, Navid, Alizadehsani, Roohallah and Mosavi, Amir. "Robust Adaptive Synchronization of a Class of Uncertain Chaotic Systems with Unknown Time-Delay. " Applied Sciences, vol. 10, no. 24 (2020): 8875.
[48] J.H. Park, S.M. Lee, O.M. Kwon. "Adaptive synchronization of Genesio–Tesi chaotic system via a novel feedback control. " Physics. Letters A, vol. 371, (2007): 263–270.