[1] Block. P. M  Hoffman. I. J  Raabe. J. B  Dowd. C  Rahal. R  Kashyap. and M. C  Mills. “Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world”. Nature Human Behavior. 4 (2020): 588–596.
                                                                                                                [2] Reyna-Lara. A. D  Soriano-Paños. S  Gómez. C  Granell. J. T  Matamalas. B  Steinegger. A  Arenas. and J Gómez-Gardeñes. “Virus spread versus contact tracing: Two competing contagion processes”. Physical Review Research. 3. no. 1 (2021): 013163.
                                                                                                                                                                                                                                [4] Nowzari. C. V.M  Preciado. and G. J  Pappas, “Analysis and control of epidemics: A survey of spreading processes on complex networks”. IEEE Control Systems Magazine. 36. no. 1 (2016): 26-46.
                                                                                                                [5] Chang. S. E Pierson. P.W  Koh. J Gerardin. B Redbird. D Grusky. and J Leskovec. “Mobility network models of COVID-19 explain inequities and inform reopening”. Nature. 589. no  7840 (2021): 82-87. 
                                                                                                                [6] Karaivanov. A. “A social network model of COVID-19”. Plos one. 15. no. 10 (2020): e0240878.
                                                                                                                [7] Brandon. W.P. “Flattening Epidemic Curves and COVID-19: Policy Rationales. Inequality. and Racism.” Journal of Health Care for the Poor and Underserved. 33 (2022): 1700-1714.
                                                                                                                [8] Brauer. F. “Compartmental models in epidemiology”. Mathematical epidemiology. (2008): 19-79.
                                                                                                                [9] Brauer. F. C Castillo-Chavez. Z Feng. F Brauer. C Castillo-Chavez. and Z Feng. “Simple compartmental models for disease transmission”. Mathematical Models in Epidemiology. (2019): 21-61.
                                                                                                                [10] Fosu. G.O. J.M Opong. and J.K Appati. “Construction of compartmental models for COVID-19 with quarantine”. lockdown and vaccine interventions. (2020).
                                                                                                                [11] Ferguson. N. M. et al. “Strategies for mitigating an influenza pandemic”. Nature. 442 (2006): 448–452.
                                                                                                                [12] Glass. R.J. L.M Glass. W.E Beyeler. and H.J Min. “Targeted social distancing designs for pandemic influenza”. Emerging infectious diseases. 12. no. 11 (2006): 1671.
                                                                                                                [13] Siettos. C.I. and L Russo. “Mathematical modeling of infectious disease dynamics”. Virulence. 4(2013): 295–306.
                                                                                                                [14] World Health Organization Writing Group et al. “Non-pharmaceutical interventions for pandemic influenza, national and community measures”. Emerging Infectious Disease, 12(2012): 88–94.
                                                                                                                [15] Klepac. P. S Kissler. and J Gog, “Contagion! The BBC Four Pandemic–the model behind the documentary”. Epidemics.  24 (2018): 49-59.
                                                                                                                [16] Firth. J. A. J Hellewell. P Klepac. S Kissler. A.J Kucharski. and L.G Spurgin. “Using a real-world network to model localized COVID-19 control strategies”. Nature medicine. 26, no. 10 (2020): 1616-1622.
                                                                                                                [17] Toivonen. R. J. P Onnela. J  Saramäki. J  Hyvönen. and K  Kaski. “A model for social networks”. Physica A: Statistical Mechanics and its Applications. 371. no. 2 (2006): 851-860.
                                                                                                                [18]  Barabási. A. L.  and R Albert. “Emergence of scaling in random networks”. Science. 286. no. 5439 (1999): 509-512.
                                                                                                                [19]  Holme. P. and B. J  Kim. “Growing scale-free networks with tunable clustering”. Physical review E. 65. no. 2 (2002): 026107.
                                                                                                                                                                                                                                [21] Wasserman. S. and K  Faust. " Social network analysis: Methods and applications". Cambridge University Press. Cambridge. UK. 1994.
                                                                                                                [22]  Luce. 
R.D.  and
 A.D Perry. “A method of matrix analysis of group structure”. 
Psychometrika. 14. no. 1. (1949): 95-116.
                                                                                                                 [23] Lü. L. D Chen. X.L Ren. Q.M Zhang. Y.C Zhang. and T Zhou. “Vital nodes identification in complex networks”. Physics reports. 650 (2016): 1-63.
                                                                                                                [24] Bonacich. P. and P Lloyd. “Eigenvector-like measures of centrality for asymmetric relations”. Social networks. 23. no. 3 (2001): 191-201.
                                                                                                                [25] Katz. L. “A new status index derived from sociometric analysis”. Psychometrika. 18. no. 1 (1953): 39-43.
                                                                                                                [26] Arasu. A. J Novak. A Tomkins. and J Tomlin. “PageRank computation and the structure of the web: Experiments and algorithms”. 11th International World Wide Web Conference. 2002. p. 107-117.
                                                                                                                [27] Lawyer. G. “Understanding the influence of all nodes in a network”. Scientific reports.  5.  no. 1 (2015): 8665.
                                                                                                                [28] Doostmohammadian. M. S  Pourazarm. and U.A  Khan. “Distributed algorithm for shortest path problem via randomized strategy”. 11th IEEE International Conference on Networking. Sensing and Control. Miami. FL. 2014. p. 463-46.