[1] Marek. Florkowski, J. Furgał, and M. Kuniewski. "Propagation of overvoltages transferred through distribution transformers in electric networks." IET Generation, Transmission & Distribution 10, no. 10 (2016): 2531-2537.
[2] F. Safaei, and M. Niasati. "Analysis of transformer insulation risk due to back flashover lightning on high voltage substations by considering the effect of environmental pollution." Journal of Modeling in Engineering 22, no. 76 (2024): 123-139.
[3] J. Furgał, M. Kuniewski, and P. Pająk. "Analysis of internal overvoltages in transformer windings during transients in electrical networks." Energies 13, no. 10 (2020): 2644.
[4] A. Allame, and A. Akbari Foroud. "Maintenance Scheduling of Wind Power Plants from the Viewpoint of the Power Plant Owner with the Aim of Minimizing the Economic Loss." Journal of Modeling in Engineering 22, no. 77 (2023):175-188.
[5] S.Z. Motlagh, and A. Akbari Foroud. "Power quality disturbances recognition using adaptive chirp mode pursuit and grasshopper optimized support vector machines." Measurement 168 (2021): 108461.
[6] G. Ansari, and R. Keypour. "Optimizing the performance of commercial demand response aggregator using the risk-averse function of information-gap decision theory." Sustainability 15, no. 7 (2023): 6243.
[7] A. Borghetti, A. Morched, F. Napolitano, C.A. Nucci, and M. Paolone. "Lightning-induced overvoltages transferred through distribution power transformers." IEEE Transactions on Power Delivery 24, no. 1 (2008): 360-372.
[8] N.A. Sabiha, and M. Lehtonen. "Lightning-induced overvoltages transmitted over distribution transformer with MV spark-gap operation—Part I: High-frequency transformer model." IEEE Transactions on Power Delivery 25, no. 4 (2010): 2472-2480.
[9] T.E. Tsovilis, A.Y. Hadjicostas, E.T. Staikos, and G.D. Peppas. "An experimental methodology for modeling surge protective devices: An application to DC SPDs for electric vehicle charging stations." IEEE Transactions on Industry Applications 60, no. 1 (2023): 1645-1655.
[10] T. Kisielewicz, G. Battista Lo Piparo, and C. Mazzetti. "Simplified approach for protection of apparatus powered by an HV/LV transformer against lightning strokes to the structure." In 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pp. 1-6. IEEE, 2022.
[11] B. Gustavsen, and K. Longva. "Neutral point overvoltages in wye-wye connected distribution transformer caused by lightning current in low-voltage winding." IEEE Transactions on Power Delivery 36, no. 5 (2020): 2851-2860.
[12] F. Safaei, N. Ramezani, and M. Niazazari. "Evaluation and Prediction of Over-Voltages Effects Caused by Direct/Indirect Lightning Stroke on Complex Power Distribution Networks Using High Frequency Modeling of the Components." Journal of Modeling in Engineering 16, no. 53 (2018): 243-258.
[13] A. Moradi, and A. Akbari Foroud. "Investigating the Factors Affecting the Transient Overvoltages Caused by Lightning in the Low-Voltage Network and the Role of the SPD Installed in the Substation in Protecting the Network." Journal of Modeling in Engineering 22, no. 76 (2024): 223-239.
[14] D. Smugała, W. Piasecki, M. Ostrogorska, M. Florkowski, M. Fulczyk, and P. Kłys. "Distribution transformers protection against high frequency switching transients." PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN (2012): 0033-2097.
[15] M. Homma, M. Sakaki, E. Kaneko, and S. Yanabu. "History of vacuum circuit breakers and recent developments in Japan." IEEE Transactions on Dielectrics and Electrical Insulation 13, no. 1 (2006): 85-92.
[16] D.D. Shipp, T.J. Dionise, V. Lorch, and B.G. MacFarlane. "Transformer failure due to circuit-breaker-induced switching transients." IEEE Transactions on Industry Applications 47, no. 2 (2010): 707-718.
[17] L. Czarnecki, and M. Lindmayer. "Measurement and statistical simulation of multiple reignitions in vacuum switches." IEEE Transactions on Plasma Science 13, no. 5 (1985): 304-310.
[18] B. Thomas, and U. Savadamuthu. "Impulse breakdown characteristics of aged oil impregnated paper." IEEE Transactions on Dielectrics and Electrical Insulation 24, no. 4 (2017): 2354-2361.
[19] S. Ghasemi, M. Allahbakhshi, B. Behdani, M. Tajdinian, and M. Popov. "Probabilistic analysis of switching transients due to vacuum circuit breaker operation on wind turbine step-up transformers." Electric Power Systems Research 182 (2020): 106204.
[20] N. Du, Y. Guan, J. Zhang, J. Niu, S. Yao, and G. Xu. "Phenomena and mechanism analysis on overvoltages caused by 40.5-kV vacuum circuit breakers switching off shunt reactors." IEEE Transactions on Power Delivery 26, no. 4 (2011): 2102-2110.
[21] Y.L. Xin, W.H. Tang, J.J. Zhou, Y.H. Yang, and G. Liu. "Sensitivity analysis of reignition overvoltage for vacuum circuit breaker in offshore wind farm using experiment-based modeling." Electric Power Systems Research 172 (2019): 86-95.
[22] N. Watson, J. Arrillaga, and J. Arrillaga. Power Systems Electromagnetic Transients Simulation. Vol. 39. Iet, 2003.
[23] Siemens. "Overvoltage Protection Devices." In Siemens LV 10. Germany, 2019.
[24] J.A Martinez-Velasco, ed. Power system transients: parameter determination. CRC press, 2017.
[25] M.A. Sargent, and M. Darveniza. "Tower surge impedance." IEEE Transactions on Power Apparatus and Systems 5 (1969): 680-687.
[26] Siemens. "Station and Intermediate Class Surge Arresters." In Energy Management, 76. Germany, 2015.
[27] J.C. Das. "Surges transferred through transformers." In Conference Record of the 2002 Annual Pulp and Paper Industry Technical Conference (Cat. No. 02CH37352), pp. 139-147. IEEE, 2002.
[28] IEEE. Std C37.04. USA: IEEE, 1999(R2006).
[29] IEC. 62271-100 62271. Geneva: IEC, 2021.
[30] E.P. Van Lanen, M. Popov, L. Van der Sluis, and R.P. Smeets. "Vacuum circuit breaker current-zero phenomena." IEEE Transactions on Plasma Science 33, no. 5 (2005): 1589-1593.
[31] T. Abdulahovic, T. Thiringer, M. Reza, and H. Breder. "Vacuum circuit-breaker parameter calculation and modelling for power system transient studies." IEEE Transactions on Power Delivery 32, no. 3 (2014): 1165-1172.
[32] D.L. Swindler. "A comparison of vacuum and SF6 technologies at 5-38 kV." IEEE Transactions on Industry Applications 5 (1984): 1355-1363.
[33] R. Smeets, L. Van der Sluis, M. Kapetanovic, D.F. Peelo, and A. Janssen. Switching in Electrical Transmission and Distribution Systems. John Wiley & Sons, 2015.
[34] P.G. Slade. The Vacuum Interrupter: Theory, Design, and Application. CRC press, 2018.
[35] C. Ding, and S. Yanabu. "Effect of parallel circuit parameters on the instability of a low-current vacuum arc." IEEE Transactions on Plasma Science 31, no. 5 (2003): 877-883.
[36] S. Kaneda, , S. Yamamoto, and T. Iwao. "Evaporation speed affected by moving speed of vacuum arc cathode spot of copper." In 2016 IEEE International Conference on Plasma Science (ICOPS), pp. 1-1. IEEE, 2016.
[37] M.B. Barbieri, R.B. Lastra, P.L. Arnera, and J.L. Aguero. "Transients due to multiple prestrike phenomenon when energizing capacitor banks with a vacuum circuit-breaker." In 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, pp. 1-6. IEEE, 2006.
[38] E.W. Boehne, and S.S. Low. "Shunt capacitor energization with vacuum interrupters-a possible source of overvoltage." IEEE Transactions on Power Apparatus and Systems 9 (1969): 1424-1443.
[39] Breakers, AC High Voltage Generator Circuit. "Rated on a symmetrical current basis." IEEE Standard C 37.
[40] R. Smeets, L. Van der Sluis, M. Kapetanovic, D.F. Peelo, and A. Janssen. Switching in Electrical Transmission and Distribution Systems. John Wiley & Sons, 2015.
[41] T. Abdulahovic. Analysis of high-frequency electrical transients in offshore wind parks. Chalmers Tekniska Hogskola (Sweden), 2011.