[1] M.H. Aghdam, and M. Daryaie Zanjani. "A novel regularized asymmetric non-negative matrix factorization for text clustering." Information Processing & Management 58, no. 6 (2021): 102694.
[2] B.J. Sun, H. Shen, J. Gao, W. Ouyang, and X. Cheng. "A non-negative symmetric encoder-decoder approach for community detection." In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 597-606. 2017.
[3] T. Shi, K. Kang, J. Choo, and C.K. Reddy. "Short-text topic modeling via non-negative matrix factorization enriched with local word-context correlations." In Proceedings of the 2018 world wide web conference, pp. 1105-1114. 2018.
[4] F. Daneshfar, S. Soleymanbaigi, A. Nafisi, and P. Yamini. "Elastic deep autoencoder for text embedding clustering by an improved graph regularization." Expert Systems with Applications 238 (2024): 121780.
[5] S.T. Li, W.G. Li, J.W. Hu, and Y. Li. "Semi-supervised bi-orthogonal constraints dual-graph regularized NMF for subspace clustering." Applied Intelligence 52, no. 3 (2022): 3227-3248.
[6] N. Salahian, F. Akhlaghian Tab, S.A. Seyedi, and J. Chavoshinejad. "Deep autoencoder-like NMF with contrastive regularization and feature relationship preservation." Expert Systems with Applications 214 (2023): 119051.
[7] S. Wang, Q. Li, C. Zhao, X. Zhu, H. Yuan, and T. Dai. "Extreme clustering–a clustering method via density extreme points." Information Sciences 542 (2021): 24-39.
[8] R. Guan, H. Zhang, Y. Liang, F. Giunchiglia, L. Huang, and X. Feng. "Deep feature-based text clustering and its explanation." IEEE Transactions on Knowledge and Data Engineering 34, no. 8 (2020): 3669-3680.
[9] B. Diallo, J. Hu, T. Li, G. Ahmad Khan, X. Liang, and Y. Zhao. "Deep embedding clustering based on contractive autoencoder." Neurocomputing 433 (2021): 96-107.
[10] L. Settipalli, G.R. Gangadharan, and U. Fiore. "Predictive and adaptive drift analysis on decomposed healthcare claims using ART based topological clustering." Information Processing & Management 59, no. 3 (2022): 102887.
[11] S. Hosseini, and Z. Asghari Varzaneh. "Deep text clustering using stacked AutoEncoder." Multimedia tools and applications 81, no. 8 (2022): 10861-10881.
[12] Z. Ren, W. Zhang, and Z. Zhang. "A deep nonnegative matrix factorization approach via autoencoder for nonlinear fault detection." IEEE Transactions on Industrial Informatics 16, no. 8 (2019): 5042-5052.
[13] G. Behera, and N. Nain. "DeepNNMF: deep nonlinear non-negative matrix factorization to address sparsity problem of collaborative recommender system." International journal of information technology 14, no. 7 (2022): 3637-3645.
[14] J. Wang, and X.L. Zhang. "Deep NMF topic modeling." Neurocomputing 515 (2023): 157-173.
[15] A.M. Veiga Simão, P.C. Ferreira, N. Pereira, S. Oliveira, P. Paulino, H. Rosa, R. Ribeiro, L. Coheur, J.P. Carvalho, and I. Trancoso. "Prosociality in cyberspace: Developing emotion and behavioral regulation to decrease aggressive communication." Cognitive Computation 13, no. 3 (2021): 736-750.
[16] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. "Variational deep embedding: An unsupervised and generative approach to clustering." Arxiv Preprint Arxiv:1611.05148 (2016).
[17] S.A. Curiskis, B. Drake, T.R. Osborn, and P.J. Kennedy. "An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit." Information Processing & Management 57, no. 2 (2020): 102034.
[18] B. Diallo, J. Hu, T. Li, G. Ahmad Khan, and A. Saad Hussein. "Multi-view document clustering based on geometrical similarity measurement." International Journal of Machine Learning and Cybernetics (2022): 1-13.
[19] M. Śmieja, Ł. Struski, and M. AT Figueiredo. "A classification-based approach to semi-supervised clustering with pairwise constraints." Neural Networks 127 (2020): 193-203.
[20] X. Li, Y. Guan, B. Fu, and Z. Luo. "Anomaly-aware symmetric non-negative matrix factorization for short text clustering." Knowledge and Information Systems (2024): 1-26.
[21] W. Sheng, and J. Lipor. "A Novel Framework for Deep Learning from Pairwise Constraints." In 2020 54th Asilomar Conference on Signals, Systems, and Computers, pp. 594-598. IEEE, 2020.
[22] R. Guan, H. Zhang, Y. Liang, F. Giunchiglia, L. Huang, and X. Feng. "Deep feature-based text clustering and its explanation." IEEE Transactions on Knowledge and Data Engineering 34, no. 8 (2020): 3669-3680.
[23] V.R. Revathy, A.S. Pillai, and F. Daneshfar. "LyEmoBERT: Classification of lyrics’ emotion and recommendation using a pre-trained model." Procedia Computer Science 218 (2023): 1196-1208.
[24] M. Moradi Fard, T. Thonet, and E. Gaussier. "Pairwise-Constrained Deep Document Clustering." In Reliability and Statistics in Transportation and Communication: Selected Papers from the 19th International Conference on Reliability and Statistics in Transportation and Communication, RelStat’19, 16-19 October 2019, Riga, Latvia, pp. 12-21. Springer International Publishing, 2020.
[25] F. Wei, Z. Chen, Z. Hao, F. Yang, H. Wei, B. Han, and S. Guo. "Semi-supervised clustering with contrastive learning for discovering new intents." arXiv preprint arXiv:2201.07604 (2022).
[26] F. Daneshfar, S. Soleymanbaigi, P. Yamini, and M.S. Amini. "A survey on semi-supervised graph clustering." Engineering Applications of Artificial Intelligence 133 (2024): 108215.
[27] L.A. Vilhagra, E.R. Fernandes, and B.M. Nogueira. "Textcsn: a semi-supervised approach for text clustering using pairwise constraints and convolutional siamese network." In Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 1135-1142. 2020.
[28] K. Berahmand, F. Daneshfar, E.S. Salehi, Y. Li, and Y. Xu. "Autoencoders and their applications in machine learning: a survey." Artificial Intelligence Review 57, no. 2 (2024): 28.
[29] Y. Yang, Q.J. Wu, and Y. Wang. "Autoencoder with invertible functions for dimension reduction and image reconstruction." IEEE Transactions on Systems, Man, and Cybernetics: Systems 48, no. 7 (2016): 1065-1079.
[30] R. Lakshmi, and S. Baskar. "Efficient text document clustering with new similarity measures." International Journal of Business Intelligence and Data Mining 18, no. 1 (2021): 49-72.
[31] M. Oghbaie, and M. Mohammadi Zanjireh. "Pairwise document similarity measure based on present term set." Journal of Big Data 5 (2018): 1-23.
[32] D. Jin, Z. Yu, P. Jiao, S. Pan, D. He, J. Wu, S. Yu Philip, and W. Zhang. "A survey of community detection approaches: From statistical modeling to deep learning." IEEE Transactions on Knowledge and Data Engineering 35, no. 2 (2021): 1149-1170.
[33] A. Ahmad, and S.S. Khan. "Survey of state-of-the-art mixed data clustering algorithms." Ieee Access 7 (2019): 31883-31902.
[34] X. Su, S. Xue, F. Liu, J. Wu, J. Yang, C. Zhou, W. Hu et al. "A comprehensive survey on community detection with deep learning." IEEE Transactions on Neural Networks and Learning Systems (2022).
[35] A. Golzari Oskouei, M.A. Balafar, and C. Motamed. "EDCWRN: efficient deep clustering with the weight of representations and the help of neighbors." Applied Intelligence 53, no. 5 (2023): 5845-5867.
[36] L. Chen, and Z. Zhong. "Adaptive and structured graph learning for semi-supervised clustering." Information Processing & Management 59, no. 4 (2022): 102949.
[37] D. Lee, and H. Sebastian Seung. "Algorithms for non-negative matrix factorization." Advances in Neural Information Processing Systems 13 (2000)
[38] J. Misztal-Radecka, and B. Indurkhya. "Bias-Aware Hierarchical Clustering for detecting the discriminated groups of users in recommendation systems." Information Processing & Management 58, no. 3 (2021): 102519.
[39] T. Zhang, R. Ramakrishnan, and M. Livny. "BIRCH: an efficient data clustering method for very large databases." ACM Sigmod Record 25, no. 2 (1996): 103-114.
[40] J.B. Alonso. "K-means vs Mini Batch K-means: a comparison (2013)".
[41] Y. Ren, K. Hu, X. Dai, L. Pan, S.C. Hoi, and Z. Xu. "Semi-supervised deep embedded clustering." Neurocomputing 325 (2019): 121-130.
[42] S. Yang, G. Huang, and B. Cai. "Discovering topic representative terms for short text clustering." IEEE Access 7 (2019): 92037-92047.
[43] W. Li, and E. Suzuki. "Adaptive and hybrid context-aware fine-grained word sense disambiguation in topic modeling based document representation." Information Processing & Management 58, no. 4 (2021): 102592.
[44] Y. Yang. Temporal data mining via unsupervised ensemble learning. Elsevier, 2016.
[45] D. Hu, D. Feng, and Y. Xie. "EGC: A novel event-oriented graph clustering framework for social media text." Information Processing & Management 59, no. 6 (2022): 103059.
[46] R. Wang, L. Li, X. Tao, X. Dong, P. Wang, and P. Liu. "Trio-based collaborative multi-view graph clustering with multiple constraints." Information Processing & Management 58, no. 3 (2021): 102466.
[47] G. Salton, and C. Buckley. "Term-weighting approaches in automatic text retrieval." Information Processing & Management 24, no. 5 (1988): 513-523.