[1] W. Chaoyue, X. Chang, W. Chaohui, and T. Dacheng. "Perceptual Adversarial Networks for Image-to-Image Transformation." IEEE Transactions on Image Processing 27, no. 8 (2018): 4066–79. https://doi.org/10.1109/TIP.2018.2836316.
[2] R. Immidisetti, S. Hu, and V.M. Patel. "Simultaneous Face Hallucination and Translation for Thermal to Visible Face Verification Using Axial-GAN." 2021 IEEE International Joint Conference on Biometrics (IJCB), 1-8. IEEE, 2021. https://doi.org/10.1109/IJCB52358.2021.9484353.
[3] S. Liu, G. Mingliang, V. John, Z. Liu, and E. Blasch. "Deep Learning Thermal Image Translation for Night Vision Perception." ACM Transactions on Intelligent Systems and Technology 12, no. 1 (February 2021). https://doi.org/10.1145/3426239.
[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. "Generative Adversarial Networks." Communications of the ACM 63, no. 11 (2020): 139-144. https://doi.org/10.1145/3422622.
[5] F. Wu, W. You, J.S. Smith, W. Lu, and B. Zhang. "Image-Image Translation to Enhance Near Infrared Face Recognition." 2019 IEEE International Conference on Image Processing (ICIP), 1-5. IEEE, 2019. https://doi.org/10.1109/ICIP.2019.8804414.
[6] P. Isola, J.Y. Zhu, T. Zhou, and A.A. Efros. "Image-to-Image Translation with Conditional Adversarial Networks." 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5967-5976. IEEE, 2017. https://doi.org/10.1109/CVPR.2017.632.
[7] Y. Luo , D. Pi, Y. Pan, L. Xie, W. Yu, and Y. Liu. "Claw Connection-Based Generative Adversarial Networks for Facial Image Translation in Thermal to RGB Visible Light." Expert Systems with Applications 185 (2021): 116269. https://doi.org/10.1016/j.eswa.2021.116269.
[8] H. Dou, C. Chen, X. Hu, and S. Peng. "Asymmetric CycleGAN for Unpaired NIR-to-RGB Face Image Translation." Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), 1757–61. IEEE, 2019.
[9] W. Weng, and X. Zhu. "UNet: Convolutional Networks for Biomedical Image Segmentation." IEEE Access 9 (2021): 16591–16603. https://doi.org/10.1109/ACCESS.2021.3053408.
[10] Z. Zongwei, M.M.R. Siddiquee, N. Tajbakhsh, and J. Liang. "UNet++: A Nested U-Net Architecture for Medical Image Segmentation." Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, edited by Danail Stoyanov et al., 1-12. Lecture Notes in Computer Science, vol. 11045. Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-00889-5_1.
[11] H. Huimin, L. Lin, R. Tong, H. Hu, Q. Zhang, Y. Iwamoto, X. Han, Y.W. Chen, and J. Wu. "UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation." ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, 1055–1059. IEEE, 2020. https://doi.org/10.1109/ICASSP40776.2020.9053405.
[12] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. "Self-Attention Generative Adversarial Networks." Proceedings of the 36th International Conference on Machine Learning (ICML), 12744–53. 2019.
[13] D. Zou, Y. Cao, D. Zhou, and Q. Gu. "Gradient Descent Optimizes Over-Parameterized Deep ReLU Networks." Machine Learning 109, no. 3 (2020): 467–92. https://doi.org/10.1007/s10994-019-05839-6.
[14] S. Ioffe, and C. Szegedy. "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift." Proceedings of the 32nd International Conference on Machine Learning (ICML), 448–56. 2015.
[15] J.L. Ba, J.R. Kiros, and G.E. Hinton. "Layer Normalization." arXiv preprint arXiv:1607.06450 (2016). https://doi.org/10.48550/arXiv.1607.06450.
[16] D. Hendrycks , and K. Gimpel. "Gaussian Error Linear Units (GELUs)." arXiv preprint arXiv:1606.08415 (2016). https://doi.org/10.48550/arXiv.1606.08415.
[17] ] J.Y. Zhu, T. Park, P. Isola, and A.A. Efros. "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks." Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 12744–53. IEEE, 2017. https://doi.org/10.1109/ICCV.2017.244.
[18] X. Mao, Q. Li, H. Xie, R.Y.K. Lau, Z. Wang, and S.P. Smolley. "Least Squares Generative Adversarial Networks." Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 1032–40. IEEE, 2017. https://doi.org/10.1109/ICCV.2017.304.
[19] "Otcbvs 2004." n.d. Accessed May 9, 2025. http://vcipl-okstate.org/pbvs/bench/Data/03/download.html.
[20] C.J. Willmott, and K. Matsuura. "Advantages of the Mean Absolute Error (MAE) Over the Root Mean Square Error (RMSE) in Assessing Average Model Performance." Climate Research 30, no. 1 (2005): 79–82. https://doi.org/10.3354/cr030079.
[21] H.R. Sheikh, and A.C. Bovik. "Image Information and Visual Quality." IEEE Transactions on Image Processing 15, no. 2 (2006): 430–44. https://doi.org/10.1109/TIP.2005.859378.
[22] A. Shilandari , H. Marvi, and H. Khosravi. "Data Augmentation and Effective Feature Selection in Generative Adversarial Networks for Speech Emotion Recognition."
Journal of Modeling in Engineering 21, no. 72 (2023): 1–17.
https://doi.org/10.22075/jme.2022.24865.2159. (in Persian)
[23] H. Jabbari, and N. Bigdeli. "A New Capsule Generative Adversarial Network for Imbalanced Classification of Human Sperm Images."
Journal of Modeling in Engineering 21, no. 73 (2023): 279–94.
https://doi.org/10.22075/jme.2023.28349.2333. (in Persian)