[1] Imanaka, N., Kohler, J., Masui, T., Adachi, G.Y., Taguchi, E., Mori, H. (2000). Inclusion of nanometer-size Al2O3 particles in a crystalline (Sc, Lu)(2)(WO4)(3) matrix, Journal of American Ceramic Society, 83, 427-429.
[2] Lines, M.G. (2008). Nanomaterials for practical functional uses, Journal of Alloys and Compounds, 449, 242-245.
[3] Roco, M.C. (1999). Nanoparticles and nanotechnology research, Journal of Nanoparticle Research, 1, 1-6.
[4] Kikic, I., Lora, M. (1997). A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions(PGSS), and supercritical antisolvent (SAS), Industrial Engineering Chemistry Research, 36, 5507-5515.
[5] Türk, M., Bolten, D. (2010). Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS): Results for Naproxen, Journal of Supercritical Fluids, 55, 778–785.
[6] Hezave, A.Z., Esmaeilzadeh, F. (2010). Crystallization of micro particles of sulindac using rapid expansion of supercritical solution, Journal of Crystal Growth, 312, 3373–3383.
[7] Hezave, A.Z., Esmaeilzadeh, F. (2010). Investigation of the rapid expansion of supercritical solution parameters effects on size and morphology of cephalexin particles, Journal of Aerosol Science, 41, 1090–1112.
[8] Vemavarapu, C., Mollan, M.J., Needham, T.E. (2009). Comprecipitation of pharmaceutical actives and their structurally related by the RESS process, Powder Technology, 189, 444-453.
[9] Lee, A.K., Shine, A.D. (1992). Morphology of polymers precipitated from a supercritical solvent, AIChE Journal, 38-5, 742-752.
[10] weber, M., Russell, L.M., Debenedetti, P.G. (2002). Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions, Journal of Supercritical Fluids, 23, 65-80.
[11] Helfgen, B., Hils, P., Holzknecht, Ch., Turk, M., Schaber, K. (2001). simulation of particle formation during the rapid expansion of supercritical solutions, Journal of Aerosol Science, 32, 295-319.
[12] Debenedetti, P.G. (1990). Homogeneous nucleation in supercritical fluids, AIChE Journal, 36-9, 1289-1298.
[13] Weber, M., Thies, M.C. (2007). A simplified and generalized model for the rapid expansion of supercritical solutions, Journal of Supercritical Fluids, 40, 402-419.
[14] Ghoreishi, S.M., Komeili, S. (2009). Modeling of fluorinated tetraphenylporphyrin nanoparticles size design via rapid expansion of supercritical solution, Journal of Supercritical Fluids, 50, 183-192.
[15] Helfgen, B., Turk, M., Schaber, K. (2003). Hydrodynamic and aerosol modeling of rapid expansion of supercritical solutions (RESS-process), Journal of Supercritical Fluids, 26, 225-242.
[16] Kaibi, K., Tenaud, C., Subra, P., Garrabos, Y. (1996). Numerical simulation of rapid expansion of supercritical fluids, European Journal of Mechanics B/Fluids, 15(4), 569-596.
[17] Su, C.S., Tang, M., Chen, Y.P. (2009). Micronization of nabumetone using the rapid expansion of supercritical solution (RESS) process, Journal of Supercritical Fluids, 50, 69–76.
[18] H.-H. Tung, E. L. Paul, M. Midler, J. A. McCauley, Crystallization of Organic Compounds An Industrial Perspective, John Wiley & Sons, Inc., Hoboken, New Jersey, (2009).
[19] White, F.M. (2003). Fluid Mechanics, fifth ed., McGraw Hill, New York.
[20] Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G. (1999). Molecular Thermodynamics of Fluid-Phase Equilimria, Third ed., Prentice Hall PTR, New Jersey.
[21] Angus, S., Armstrong, B., de Reuck, K.M. (1976). International Thermodynamic Tables of the Fluid State—Carbon Dioxide, Pergamon Press, London.
[22] Walas, S.M. (1985). Phase Equilibria in Chemical Engineering, Butterworth, MA.
[23] Sun, Y.P. (2002). Supercritical Fluid Technology in Materials Science and engineering, Marcel Dekker, New York.
[24] To, D., Dave, R. (2009). Deagglomeration of Nanoparticle Aggregates via Rapid Expansion of Supercritical or High-Pressure Suspensions, AIChE Journal, 55(11), 2807-2826.
[25] Li, J., Matos, H.A., de Azevedo, E.G. (2004). Two-phase homogeneous model for particle formation from gas-saturated solution processes, Journal of Supercritical Fluids, 32, 275-286.
[26] Hirunsit, P., Huang, Z., Srinophakun, T., Charoenchaitrakool, M., Kawi, S. (2005). Particle formation of ibuprofen–supercritical CO2 system from rapid expansion of supercritical solutions (RESS): A mathematical model, Powder Technology, 154, 83 – 94.
[27] Kim, D.H., Gautam, M., Gera, D. (2002). Modeling Nucleation and Coagulation Models in the Formation of Particulate Matter inside a Turbulent Exhaust Plume of a Diesel Engine, Journal of Colloid and Interface Science, 249, 96-103.
[28] Qumar, S., Warnecke, G., Elsner, M.P. (2009). On the solution of population balances for nucleation, growth, aggregation and breakage processes, Chemical engineering Science 64, 2088-2095.
[29] Su, C.S., Chen, Y.P. (2008). Measurement and correlation for the solid solubility of nonsteroidal anti-inflammatory drugs (NSAIDs) in supercritical carbon dioxide, Journal of Supercritical Fluids, 43, 438–446.
[30] Seinfeld, J.H., Pandis, S. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley and Sons, New York.