[1] Markowitz, H. M. (1952) “Portfolio selection”, The Journal of Finance,
7(1); 77-91.
[2] Konno, H., and Yamazaki, H. (1991) “Mean-absolute deviation portfolio optimization model and its application to the Tokyo Stock Market”, Management Science, 37(5); 519-531.
[3]Moon, Y., and Yao, T. (2011). “A robust mean absolute deviation model for portfolio optimization”, Computers & Operations Research, 38(9); 1251-1258.
[4] Simaan, Y. (1997) “Estimation Risk in Portfolio Selection: The Mean Variance Model Versus the Mean Absolute Deviation Model”, Management Science, 43(10); 1437-1446.
[5] Lee, S. M., and Chesser, D. L. (1980) “Goal programming for portfolio selection”, The journal of portfolio management, 6(3); 22-26.
[6] Young M. R. (1998) “A Minimax Portfolio Selection Rule with Linear Programming Solution” Management Science, 44(5); 673-683.
[8] Anagnostopoulos, K. P., and Mamanis, G. (2010) “A portfolio optimization model with three objectives and discrete variables”,
Computers & Operations Research,
37(7); 1285-1297.
[9] Chang, T.-J., Meade, N., Beasley, J. E., and Sharaiha, Y. M. (2000) “Heuristics for cardinality constrained portfolio optimization” Computers & Operations Research. 27(13); 1271-1302.
[10] Yang, X. (2006) “Improving portfolio efficiency: a Genetic Algorithm Approach”, Computational Economics, 28(1); 1-14.
[11] Lin, Chi-Ming, and Gen, M. (2007) “An Effective Decision-Based Genetic Algorithm Approach to Multiobjective Portfolio Optimization Problem”, Applied Mathematical sciences, 1(5); 201-210.
[12] Lin, Chang-Chun, and Liu, Yi-Ting (2008) “Genetic algorithms for portfolio selection problems minimum transaction lots”, European Journal of Operational Research, 185(1); 393-404.
[13] Aranha, C., and Iba, H. (2009), “The Memetic Tree-based Genetic Algorithm and its application to Portfolio Optimization”, Memetic Computing 1(1); 139–151.
[14] Hao, F.F., and Liu, Y.K. (2009) “Mean-variance models for portfolio selection with fuzzy random returns”, Journal of Applied Mathematics and Computing 30(1); 9–38
[15] Chang, T. J., Yang, S. C., and Chang, K. J. (2009) “Portfolio optimization problems in different risk measures using genetic algorithm”, Expert Systems with Applications 36(1); 10529–10537.
[17] Pinto, D. D. D., Monteiro, J.G.M..S., and Nakao, E. H. (2011) “An approach to portfolio selection using an ARX predictor for securities’ risk and return”,
Expert Systems with Applications,
38(12); 15009-15013.
[18] Naimi Sadigh, A., Mokhtari, H., Iranpoor, M., and Fatemi Ghomi S. M. T. (2012) “Cardinality Constrained Portfolio Optimization Using a Hybrid Approach based on Particle Swarm Optimization and Hopfield Neural Network”, Advanced Science Letters, 17(1) 11–20.
[19]
Gupta, P., Inuiguchi, M., Mehlawat, M. K., and Mittal G. (2013) “Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints”,
Information Sciences,
229(1); 1-17.
[20]
Liu, Yong-Jun, and
Zhang, Wei-Guo (2013) “ Fuzzy portfolio optimization model under real constraints”, Mathematics and Economics,
53(3); 704-711.
[21]
Zhang, X., Zhang, W., and
Xiao, W. (2013) “Multi-period portfolio optimization under possibility measures”.
Economic Modelling,
35(1); 401-408.
[22] Cochran W. G., and Cox, G. M. (1992) “Experimental Design, 2nd edition”, Wiley, New York. John Wiley& Sons.
[23] Taguchi, G. (1986) “Introduction to quality engineering”, White Plains: Asian Productivity Organization/UNIPUB.
[24] Mozafari, M., Tafazzoli, S., and Jolai, F. (2011) “A new IPSO-SA approach for cardinality constrained portfolio optimization”, International Journal of Industrial Engineering Computation, 2(2); 249-262.