[1] E. A. Thornton, Thermal buckling of plates and shells, Applied Mechanics Review, Vol. 46, No. 10, pp. 485–506, 1993.
[2] K. D. Murphy, D. Ferreira, , Thermal buckling of rectangular plates, Int. J. Solids and Structures, Vol. 38, No. 22, pp. 3979–3994, 2001.
[3] M. A. Mahayni, Thermal Buckling of Shallow Shells, Int. J. Solids and Structures, Vol. 2, pp. 167-180, 1966.
[4] J. S. Chang, W. C. Chui, Thermal Buckling Analysis of Anti-symmetric Laminated Cylindrical Shell Panels”, Int. J. Solids and Structures, Vol. 27, No. 1, pp. 1295-1309,1991.
[5] S. K. Jang, C. W. Bert, A. G. Striz, Application of differential quadrature to static analysis of structure components, Int. J. Numer. Meth. Eng, Vol. 28, pp. 261-577, 1989.
[6] R. Akbari. Alashti, S. A. Ahmadi, Buckling of imperfect thick cylindrical shells and curved panels with different boundary conditions under external pressure, J. Theoretical and applied mechanics, Vol. 52, pp. 25-36, 2014.
[7] A. Alibeigloo, R. Madoliat, Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature, Composite Structures, Vol. 88, pp. 342 – 353, 2009.
[8] A .Alibeigloo, A. M. Kani, 3D free vibration analysis of laminated cylindrical shell integrated piezoelectric layers using differential quadrature method, Applied Mathematical Modeling, Vol. 34, pp. 4123 –4137, 2010.
[9] H. Haftchenari, M. Darvizeh, A. Darvizeh, R. Ansari, and C. B. Sharma, Dynamic analysis of composite cylindrical shells using differential quadrature Method (DQM),Composite Structures, Vol. 78, pp. 292 – 298, 2007.
[10] Koizumi M., The concept of FGM. Ceramic Transactions, Functionally Gradient Materials, Vol. 34, pp. 3–10, 1993.
[11] K. Tanaka, Y. Tanaka, H. Watanabe, An improved solution to thermo elastic materials designed in functionally gradient materials: scheme to reduce thermal stresses, Comput. Meth Appl. Mech. Eng, Vol. 106, pp. 377–89, 1993.
[12] S .Takezono, K .Tao, E. Inamura, Thermal stress and deformation in functionally graded material shells of revolution under thermal loading due to fluid, Jpn Soc Mech Eng Int J, Ser A, Vol. 62, No. 594, pp. 474–81, 1996.
[13] B. A. Samsam shariat, M. R. Eslami, Thermal buckling of imperfect functionally graded plates, Int. J. Solids and Struct, Vol. 43, pp.4082-4096, 2006.
[14] R. Javaheri, M. R. Eslami, Thermal buckling of functionally graded plates, AIAA J, Vol. 40, No. 1, pp. 162–169, 2002.
[15] L. H. Wu, Thermal buckling of a simply supported moderately thick rectangular FGM plate, Compos. Struct, Vol. 64, No. 2, pp. 211–218, 2004.
[16] N. L. Breivik, Thermal and mechanical response of curved composite panels, [PHD thesis], Virginia, Virginia Polytechnic Institute and State University, 1997.
[17] R. Akbari. Alashti, S. A. Ahmadi, Buckling analysis of functionally graded thick cylindrical shells with variable thickness using DQM, Arabian Journal for Science and Engineering, Published online, 2014
[18] اکبری آلاشتی، ر. احمدی، س.ع.، (1392)، تحلیل کمانش مکانیکی پوستههای استوانهای جدار ضخیم مدرج تابعی با استفاده از تئوری تغییر شکل برشی مرتبه سوم. مجله علمی پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، (پذیرفته شده).
[19] R .E. Bellman, Casti J., Differential quadrature and long term Integration, Journal of Mathematical Analysis and Applications, Vol. 34, No. 1, pp. 235-238, 1971.
[20] C. Shu, Differential quadrature and its application in Engineering, Springer-Verlag, London, UK, 2000.