THREE DIMENSIONAL BUCKLING ANALYSIS OF FG CYLINDRICAL PANELS UNDER VARIOUS THERMAL LOAD CONDITIONS

Authors

Zabol University

Abstract

In this paper, buckling analysis of cylindrical panels made of functionally graded material under the action of three types of thermal loads is investigated. At first, Governing equations of panels are obtained based on the second Piola-Kirchhoff stress tensor using three dimensional theory of elasticity. Stability equations of the shells subjected to thermal loading based on the Donnell shell theory are considered. Two methods of solution are employed. In the first method governing equations obtained by benchmark solution are discretized and solved using differential quadrature method. Then the closed form solution is presented for the buckling equations based on the Donnell shell theory. It is assumed that material properties of the shell vary continually through the thickness according to a power law distribution of the volume fraction of constituent materials, while the Poisson’s ratio is constant. The effects of various parameters including the power law exponent, panel angle, different thermal load conditions and geometric ratios on the buckling behavior of functionally graded cylindrical panels are studied.

Keywords


 
[1]     E. A. Thornton, Thermal buckling of plates and shells, Applied Mechanics Review, Vol. 46, No. 10, pp. 485–506, 1993.
[2]     K. D. Murphy, D. Ferreira, , Thermal buckling of rectangular plates, Int. J. Solids and Structures, Vol. 38, No. 22, pp. 3979–3994, 2001.
[3]     M. A. Mahayni, Thermal Buckling of Shallow Shells, Int. J. Solids and Structures, Vol. 2, pp. 167-180, 1966.
[4]     J. S. Chang, W. C. Chui, Thermal Buckling Analysis of Anti-symmetric Laminated Cylindrical Shell Panels”, Int. J. Solids and Structures, Vol. 27, No. 1, pp. 1295-1309,1991.
[5]     S. K. Jang, C. W. Bert, A. G. Striz, Application of differential quadrature to static analysis of structure components, Int. J. Numer. Meth. Eng, Vol. 28, pp. 261-577, 1989.
[6]     R. Akbari. Alashti, S. A. Ahmadi, Buckling of imperfect thick cylindrical shells and curved panels with different boundary conditions under external pressure, J. Theoretical and applied mechanics, Vol. 52, pp. 25-36, 2014.
[7]     A. Alibeigloo, R. Madoliat, Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature, Composite Structures, Vol. 88, pp. 342 – 353, 2009.
[8]     A .Alibeigloo, A. M. Kani, 3D free vibration analysis of laminated cylindrical shell integrated piezoelectric layers using differential quadrature method, Applied Mathematical Modeling, Vol. 34, pp. 4123 –4137, 2010.
[9]     H. Haftchenari, M. Darvizeh, A. Darvizeh, R. Ansari, and C. B. Sharma, Dynamic analysis of composite cylindrical shells using differential quadrature Method (DQM),Composite Structures, Vol. 78, pp. 292 – 298, 2007.
[10] Koizumi M., The concept of FGM. Ceramic Transactions, Functionally Gradient Materials, Vol. 34, pp. 3–10, 1993.
[11] K. Tanaka, Y. Tanaka, H. Watanabe, An improved solution to thermo elastic materials designed in functionally gradient materials: scheme to reduce thermal stresses, Comput. Meth Appl. Mech. Eng, Vol. 106, pp. 377–89, 1993.
[12] S .Takezono, K .Tao, E. Inamura, Thermal stress and deformation in functionally graded material shells of revolution under thermal loading due to fluid, Jpn Soc Mech Eng Int J, Ser A, Vol. 62, No. 594, pp. 474–81, 1996.
[13] B. A. Samsam shariat, M. R. Eslami, Thermal buckling of imperfect functionally graded plates, Int. J. Solids and Struct, Vol. 43, pp.4082-4096, 2006.
[14] R. Javaheri, M. R. Eslami, Thermal buckling of functionally graded plates, AIAA J, Vol. 40, No. 1, pp. 162–169, 2002.
[15] L. H. Wu, Thermal buckling of a simply supported moderately thick rectangular FGM plate, Compos. Struct, Vol. 64, No. 2, pp. 211–218, 2004.
[16] N. L. Breivik, Thermal and mechanical response of curved composite panels, [PHD thesis], Virginia, Virginia Polytechnic Institute and State University, 1997.
[17] R. Akbari. Alashti, S. A. Ahmadi, Buckling analysis of functionally graded thick cylindrical shells with variable thickness using DQM, Arabian Journal for Science and Engineering, Published online, 2014
[18]  اکبری آلاشتی، ر. احمدی، س.ع.، (1392)، تحلیل کمانش مکانیکی پوسته­های استوانه­ای جدار ضخیم مدرج تابعی با استفاده از تئوری تغییر شکل برشی مرتبه سوم. مجله علمی پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، (پذیرفته شده).
[19] R .E. Bellman, Casti J., Differential quadrature and long term Integration, Journal of Mathematical Analysis and Applications, Vol. 34, No. 1, pp. 235-238, 1971.
[20] C. Shu, Differential quadrature and its application in Engineering, Springer-Verlag, London, UK, 2000.