[1] Zhou, D.W., (2004). “Heat transfer enhancement of copper nanofluid with acoustic cavitation”. International Journal of Heat and Mass Transfer, Vol. 47, pp. 3109-3117.
[2] Choi, S.U.S., Eastman J.A., (1995). “Enhancing thermal conductivity of fluids with nanoparticles”. Materials Science, Vol. 231, pp. 99-105.
[3] Eastman, J.A., Choi U.S., Li S., Soyez G., Thompson L.J., DiMelfi R.J., (1999). “Novel thermal properties of nanostructured materials”. Materials Science Forum, Vol. 312-314, pp. 629-634.
[4] Xuan, Y., Roetzel W., (2000). “Conceptions for heat transfer correlation of nanofluids”. International Journal of Heat and Mass Transfer, Vol. 43, pp. 3701-3707.
[5] Rashidi, M.M., Abelman S., Freidoonimehr N., (2013). “Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid”. International Journal of Heat and Mass Transfer, Vol. 62, pp. 515-525.
[6] Liao, S.J., Beyond perturbation: introduction to the homotopy analysis method. 2004: Chapman & Hall/CRC.
[7] Mustafa, M., Hayat T., Pop I., Asghar S., Obaidat S., (2011). “Stagnation-point flow of a nanofluid towards a stretching sheet”. International Journal of Heat and Mass Transfer, Vol. 54, pp. 5588-5594.
[8] Abbas, Z., Wang Y., Hayat T., Oberlack M., (2010). “Mixed convection in the stagnation-point flow of a Maxwell fluid towards a vertical stretching surface”. Nonlinear Analysis: Real World Applications, Vol. 11, pp. 3218-3228.
[9] Rashidi, M.M., Ali M., Freidoonimehr N., Nazari F., (2013). “Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm”. Energy, Vol. 55, pp. 497-510.
[10] Rashidi, M.M., Freidoonimehr N., Hosseini A., Bég O.A., Hung T.K., (2014). “Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration”. Meccanica, Vol. 49, pp. 469-482.
[11] Bejan, A., (1980). “Second law analysis in heat transfer”. Energy, Vol. 5, pp. 720-732.
[12] Çengel, Y.A., Boles M.A., Thermodynamics: an engineering approach. 2006: McGraw-Hill Higher Education.
[13] Bejan, A., Second-Law Analysis in Heat Transfer and Thermal Design, in Advances in Heat Transfer, P.H. James, F.I. Thomas, Editors. 1982, Elsevier. p. 1-58.
[14] Bejan, A., Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. 1996: CRC Press.
[15] Bejan, A., (1979). “A Study of Entropy Generation in Fundamental Convective Heat Transfer”. Journal of Heat Transfer, Vol. 101, pp. 718-725.
[16] Ibáñez, G., Cuevas S., López de Haro M., (2006). “Optimization of a magnetohydrodynamic flow based on the entropy generation minimization method”. International Communications in Heat and Mass Transfer, Vol. 33, pp. 295-301.
[17] Arikoglu, A., Ozkol I., Komurgoz G., (2008). “Effect of slip on entropy generation in a single rotating disk in MHD flow”. Applied Energy, Vol. 85, pp. 1225-1236.
[18] Aïboud, S., Saouli S., (2010). “Second Law Analysis of Viscoelastic Fluid over a Stretching Sheet Subject to a Transverse Magnetic Field with Heat and Mass Transfer”. Entropy, Vol. 12, pp. 1867-1884.
[19] Brinkman, H.C., (1952). “The viscosity of concentrated suspensions and solutions”. The Journal of Chemical Physics, Vol. 20, pp. 571-571.
[20] Oztop, H.F., Abu-Nada E., (2008). “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids”. International Journal of Heat and Fluid Flow, Vol. 29, pp. 1326-1336.
[21] Aïboud, S., Saouli S., (2010). “Entropy analysis for viscoelastic magnetohydrodynamic flow over a stretching surface”. International Journal of Non-Linear Mechanics, Vol. 45, pp. 482-489.
[22] Liao, S.J., (2004). “On the homotopy analysis method for nonlinear problems”. Applied Mathematics and Computation, Vol. 147, pp. 499-513.
[23] Liao, S., (2004). “On the homotopy analysis method for nonlinear problems”. Applied Mathematics and Computation, Vol. 147, pp. 499-513.
[24] Ali, M.E., (1994). “Heat transfer characteristics of a continuous stretching surface”. Wärme - und Stoffübertragung, Vol. 29, pp. 227-234.
[25] Ishak, A., Nazar R., Pop I., (2009). “Boundary layer flow and heat transfer over an unsteady stretching vertical surface”. Meccanica, Vol. 44, pp. 369-375.
[26] Grubka, L.J., Bobba K.M., (1985). “Heat Transfer Characteristics of a Continuous, Stretching Surface With Variable Temperature”. Journal of Heat Transfer, Vol. 107, pp. 248-250.
[27] Mahdy, A., (2012). “Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet”. Nuclear Engineering and Design, Vol. 249, pp. 248-255.
[28] Bachok, N., Ishak A., Pop I., (2012). “Flow and heat transfer characteristics on a moving plate in a nanofluid”. International Journal of Heat and Mass Transfer, Vol. 55, pp. 642-648.