[1]. Keshtegar, B., Miri, M. (2013). “An enhanced HL-RF Method for the computation of structural failure probability based on relaxed approach”. Civil Engineering Infrastructures, Vol.
1(1), pp. 69-80.
[2]. کشته گر، ب. میری، م. (1393). "ارائه روشی جدید برای ارزیابی قابلیت اعتماد سازهها". مجله مدلسازی در مهندسی، سال 12، شماره 36، ص. 29-42.
[3]. Santosh, T.V., Saraf, R.K., Ghosh, A.K., Kushwaha, H.S. (2006). “Optimum step lengthselection rule in modified HL-RF method for structural reliability”. International Journal of Pressure Vessels Piping, Vol. 83)10(, pp. 742-748.
[4]. Keshtegar, B., Miri, M. (2014). “Introducing Conjugate gradient optimization for modified HL-RF method”. Engineering Computations, Vol. 31(4), pp. 775-790.
[5]. Naess, A., Leira, B.J., Batsevych, O. (2009). “System reliability analysis by enhanced Monte Carlo simulation”. Structural Safety, Vol. 31, pp. 349–355.
[6]. Hasofer, A.M., Lind, N.C. (1974). “Exact and invariant second moment code format”. journal of engineering mechanics, Vol. 100(1), pp. 111-121.
[7]. Rackwitz, R., Fiessler, B. (1978). “Structural reliability under combined load sequences”. Computers and Structures, Vol. 9, pp.489–494.
[8]. Liu P.L., Derkiureghian, A. (1991). “Optimization algorithms for structural reliability”. Structural Safety, Vol. 9 (3), pp. 161–78.
[9]. Yang, D. (2010). “Chaos control for numerical instability of first order reliability method”. Communications in Nonlinear Science and Numerical Simulation, Vol. 5(10), pp. 3131-3141.
[11]. Elegbede, C. (2005). “Structural reliability assessment based on particles swarm optimization”, Structural Safety, Vol. 27(2), pp. 171–186.
[12]. Geem, Z.W., Kim, J.H., Loganathan, G.V. (2001). “A new heuristic optimization algorithm: harmony search”. International Transactions of the Society for Modeling and Simulation, Vol. 76(2), pp. 60–68.
[13]. Mahdavi, M., Fesanghary, M., Damangir, E. (2007). “An improved harmony search algorithm for solving optimization problems”. Applied Mathematics and Computation, Vol. 188, pp. 1567–1579.
[14]. Kattan, A., Abdullah, R. (2013). “A dynamic self-adaptive harmony search algorithm for continuous optimization problems”. Applied Mathematics and Computation, Vol. 219, pp. 8542–8567.
[15]. Lee, K.S., Geem, Z.W. (2005). “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice”. Computer Methods Applied Mechanic Engineering, Vol. 194(36-38), pp.3902–3933.
[16]. Sinsuphan, N., Leeton U., Kulworawanichpong, T. (2013). “Optimal power flow solution using improved harmony search method”. Applied Soft Computing, Vol. 13, pp. 2364–2374.
[17]. Ricart, J., H¨uttemann, G., Lima, J., Bar´an, B. (2011). “Multi-objective Harmony Search Algorithm Proposals”. Electronic Notes in Theoretical Computer Science, Vol. 281, pp. 51–67.
[18]. Omran, M.G.H., Mahdavi, M. (2008). “Global-best harmony search”. Applied Mathematics and Computation, Vol. 198, 643–656.
[19]. El-Abd, M. (2013). “An improved global-best harmony search algorithm”. Applied Mathematics and Computation, Vol. 222, pp. 94–106.
[20]. Zhao, Y.G., Lu, Z.H., (2007).” Fourth-Moment standardization for structural reliability assessment, Journal of Structural Engineering, Vol. 133(7), pp. 916–924,
[21]. Derkiureghian, A., Stefano, M.D. (1991). “Efficient algorithm for second-order reliability analysis”. Journal of Engineering Mechanics, Vol. 117(12), pp. 2904-2923.