[1] Ahmadi, A., Skandari, J., Poorshahsavar, H. (2016). “Three dimensional buckling analysis of FG cylindrical panels under various thermal load conditions”. Journal of Modeling in Engineering, Semnan University, Vol. 14, pp. 39–50.
[2] Ahmadi, A., Akbari, R. (2014). “Mechanical buckling analysis of functionally graded thick cylindrical shells using third order shear deformation theory”. Journal of Modeling in Engineering, Semnan University, Vol. 12, pp. 129–142.
[3] Shariatmadar, H., Abbaszadeh, H. (2009). “Modeling of Buckling Restrained Braces Subjected to Dynamic loads”. Journal of Modeling in Engineering, Semnan University, Vol. 4, pp. 1–11.
[5] Rasheed, H.A., Yousif, O.H. (2005). “Stability of anisotropic laminated rings and long cylinders subjected to external hydrostatic pressure”.
Journal of Aerospace Engineering (ASCE), Vol. 18, pp. 129–138.
[6] Hur, S.H., Son, H.J., Kweon, J.H., Choi, J.H. (2008). “Post-buckling of composite cylinders under external hydrostatic pressure”. Journal of Composite Structure (COMPOS STRUCT), Vol. 86, pp. 114–124.
[7] Moon, C.J., Kim, I.H., Choi, B.H., Kweon, J.H., Choi, J.H. (2010). “Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications”. Journal of Composite Structure (COMPOS STRUCT), Vol. 92, pp. 2241–2251.
[8] Han, J.Y., Jung, H.Y., Cho, J.R., Choi, J.H., Bae, W.B. (2008). “Buckling analysis and test of composite shells under hydrostatic pressure”. Journal of Materials Processing Technology, Vol. 201, pp. 742–745.
[9] Graham, D. (1995). “Composite pressure hulls for deep ocean submersibles”. Journal of Composite Structure, Vol. 32, pp. 331–343.
[10] Graham, D. (1996). “Buckling of thick-section composite pressure hulls”. Journal of Composite Structure, Vol. 35, pp. 5–20.
[11] Carvelli, V., Panzeri, N., Poggi, C. (2001). “Buckling strength of GFRP under-water vehicles”. Department of Structural Engineering, Composites: Part B, Vol. 32, pp. 89–101.
[12] Tafreshi, A. (2004). “Delamination buckling and post-buckling in composite cylindrical shells under external pressure”. thin walled structures journal, Vol. 42, pp. 1379–1404.
[13] Tafreshi, A. (2006). “Delamination buckling and post buckling in composite cylindrical shells under combined axial compression and external pressure”. Journal of Composite Structure, Vol. 72, pp. 401–418.
[14] Frulloni, E., Kenny, J.M., Conti, P., Torre, L. (2007). “Experimental study and finite element analysis of the elastic instability of composite lattice structures for aeronautic applications”. Journal of Composite Structure, Vol. 78, pp. 519–528.
[15] Wullschleger, L., Meyer, H.R. (2002). “Buckling of geometrically imperfect cylindrical shells- definition of a buckling load”. International Journal of Nonlinear Mechanics,Vol. 37, pp. 645-657.
[16] Bisagni, C. (2000). “Numerical analysis and experimental correlation of composite shell buckling and post buckling”. Composite: Part B: Engineering, Vol.31, Issue 8, pp. 655-667.
[17] Priyadarsini, R. S., Kalyanaraman, V., Srinivasan, S.M. (2012). “Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression”. International Journal of Structural Stability and Dynamics, Vol. 12, Issue 4, pp. 651-676.