The Effect of Application of High Performance Fiber Reinforced Cementitious Composites (HPFRCC) on the Cyclical Behavior Improvement of Reinforced Concrete Beam-Column Connections

Document Type : Civil Article

Authors

1 Faculty of Civil Engineering, Semnan University, Semnan, Iran

2 Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran

Abstract

According to recent studies, beam-column connections in concrete structures are highly important since failure in these parts, as the main elements of force transmission in the building, causes the destruction and instability of the entire structure. The use of high performance fiber reinforced cementitious composites (HPFRCC) is one of the new methods to make beam-column connections. These materials include cement mortar with fine aggregates and fiber. They have high pre-failure cracking and energy absorption capabilities due to exhibiting strain hardening behavior under tensile loading, which can lead to the formation of structures with higher resistance and ductility than the conventional concrete structures. In this paper, following the introduction of HPFRCC materials, the impact of using HPFRCC materials on improving the beam-column connection performance was studied. To this end, the results of experimental studies by Chao at the University of Michigan were used as the basis for verification of finite element model. Accordingly, the effects of different connection parameters on the connection performance were examined in the base model individually or in combination. The results of nonlinear finite element models analysis indicated that the ductility ratio of HC-B0-C711.2 and HC-B0-C355.6 models is higher than other models. Thus, their ductility ratio appears to be 50.1% higher than the base connection. In addition, the maximum resistance of the HC-BS50 connection is greater than all other models so that its maximum resistance is 4.6 % more than the base connection.

Keywords

Main Subjects


[1] Naaman A. E. & Reinhardt H. W. 2003 Setting the Stage: Toward Performance Based Classification of FRC Composites. In: High Performance Fiber Reinforced Cement Composites (HPFRCC4), Proceeding of the Fourth International RILEM Workshop, A. E. Naaman & H. W. Reinhardt (ed.), pp. 1-4.
[2] جندقی، ف.، شربتدار، م. ک. و جلالی، م. (1388)، "بررسی جنبه­ های گوناگون مدل­سازی عددی تیرهای بتن مسلح مقاوم شده در برش با پلیمرهای مسلح به الیاف (FRP) به روش نصب در نزدیکی سطح (NSM)"، نشریه علمی و پژوهشی مدل­سازی در مهندسی، دانشگاه سمنان، سال 7، شماره 19.
[3] Fakharifar M., Dalvand A., Arezoumandi M., Sharbatdar M. K., Chen G. & Kheyroddin A. 2014 Mechanical Properties of High Performance Fiber Reinforced Cementitious Composites. Construction and Building Materials, 71, 510-520.
[4] Fischer G. 2004 Characterization of Fiber-Reinforced Cement Composites by Their Tensile Stress-Strain Behavior and Quantification of Crack Formation. In: Sixth International RILEM Symposium on Fiber-Reinforced Concretes (FRC), pp. 331-338.
[5] Li V. C., Wang S. & Wu C. 2001 Tensile Strain-Hardening Behavior of Polyvinyl Alcohol Engineered Cementitious Composite (PVA-ECC). ACI Materials Journal, 98(6), 483-492.
[6] Kunieda M. & Rokugo K. 2006 Recent Progress on HPFRCC in Japan Required Performance and Applications. Journal of Advanced Concrete Technology, 4(1), pp. 19-33.
[7] Bache H. H. 1981 Densified Cements Ultra-Fine Particle-Based Materials. Presented at the Second International Conference on Super plasticizers in Concrete, Ottawa, Canada, Report No. 40.
[8] Chanvillard G. & Rigaud S. 2003 Complete Characterisation of Tensile Properties of Ductal UHPFRC According to the French Recommendations. In: High Performance Fiber Reinforced Cement Composites (HPFRCC4), Proceeding of the Fourth International RILEM Workshop, A. E. Naaman & H. W. Reinhardt (ed.), HPFRCC4, pp. 21-34.
[9] Li V. C. 1993 From Micromechanics to Structural Engineering-the Design of Cementitious Composites for Civil Engineering Applications. Journal of Structural Mechanics and Earthquake Engineering, JSCE, 10(2), pp. 37-48.
[10] Fischer G., Wang S. & Li V. C. 2003 Design of Engineered Cementitious Composites (ECC) for Processing and Workability Requirements. In: Seventh International Symposium on Brittle Matrix Composites, pp. 29-36.
[11] Li V. C. 2007 Engineered Cementitious Composites (ECC) – Material, Structural, and Durability Performance. University of Michigan, Ann Arbor, Michigan, USA.
[12] Fischer G. & Li V. C. 2002 Effect of Matrix Ductility on Deformation Behavior of Steel-Reinforced ECC Flexural Members Under Reversed Cyclic Loading Conditions.  ACI Structural Journal, 99(6), pp. 781-790.
[13] Hemmati, A., Kheyroddin, A., Sharbatdar, M. K., Park, Y. & Abolmaali, A. 2016 Ductile Behavior of High Performance Fiber Reinforced Cementitious Composite (HPFRCC) Frames. Journal of Construction and Building Materials, Vol. 115, pp. 681-689.
[14] Hung C. C. & El-Tawil S. 2010 Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6), pp. 568-576.
[15] Ziaei, M. & Peyghaleh, E. 2009 Guidelines for Modeling in ABAQUS Software. Tehran, Iran, (In Persian).
[16] لطف­اللهی ­یقین، م. ع. و ضیائیون، م. (1391)، "بررسی رفتار ستون­های مرکب دولایه تحت اثر متقابل نیروی محوری و لنگر خمشی"، نشریه علمی و پژوهشی مدل­سازی در مهندسی، دانشگاه سمنان، سال 10، شماره 31.
[17] ABAQUS (Computer Software), Abaqus Analysis User's Manual.
[18] خلیلی، ع.، خیرالدین، ع.، شربتدار، م. ک. و فراهانی، ا. (1395)، "بررسی رفتار غیرخطی قاب­های بتن مسلح مقاوم­ سازی شده به کمک طوقه و دستک فولادی در اتصال و تقویت تیر و ستون"، نشریه علمی و پژوهشی مدل­سازی در مهندسی، دانشگاه سمنان، سال 14، شماره 46.
[19] Chao Sh. H. 2005 Bond Characterization of Reinforcing Bars and Prestressing Strands in High Performance Fiber Reinforced Cementitious Composites Under Monotonic and Cyclic Loading. PhD Dissertation, University of Michigan, Ann Arbor, Michigan, USA.