Constitutive Model for Estimating Concrete Strength Using Ultrasonic Test Considering Mixing Ratios

Document Type : Civil Article

Authors

1 Civil Engineering Department, College of Engineering, University of Tehran, Tehran, Iran

2 Department of civil engineering, Sharif University of Technology, Tehran, Iran

3 Department of Civil Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran

Abstract

Evaluation of concrete strength is one of the important issues in the concrete industry and concrete structures. In most cases, during construction, samples of concrete are picked up and after curing, according to the existing standards, they are subjected to uniaxial compression and based on the applied force, the strength of the concrete is determined. Minimum strength of concrete can be predicted but in many cases, due to reasons such as lack of proper implementation, concrete strength in structure with design strength is different. Core drilling is one of the accepted in-situ tests for measuring the strength of concrete that is a destructive method. Providing a non-destructive method that can estimate the strength of concrete in a structure in many cases is a remedial. In this research, by providing concrete samples with different mix design, in addition to studying the effect of mixing ratios on concrete strength and ultrasound wave velocity, a relationship between concrete strength and ultrasonic wave velocity is presented. Also, a comprehensive relationship is presented to estimate the strength of concrete considering water to cement ratio and the ratio of fine aggregate to course aggregate.

Keywords

Main Subjects


[1] International Atomic Energy Agency, T. C. S. No 10., "Ultrasonic Testing of Materials at Level 2", 1999.
[2] H.Y. Qasrawi and I.A. Marie, "The use of USPV to anticipate failure in concrete under compression", Cement and Concrete Research, Vol. 33, No. 12,2003, pp. 2017-2021.
[ 3 ] سمیه خراسانی و فرهنگ هنرور،" مدل سازی تکنیک بازرسی فراصوتی زمان پرواز پراش  (ToFD) با استفاده از روش اجزای محدود"، مجلۀ مدلسازی در مهندسی، دوره 13 ، شماره 41 ، تابستان 1394 ، صفحه 26 - 13 .
[4] C. ASTM, 597, Standard test method for pulse velocity through concrete. Annual Book of ASTM Standards, Vol. 4, 2000.
[5] A. Davis and et al., "Nondestructive test methods for evaluation of concrete in structures", American Concrete Institute, ACI, Vol. 228, 1998.
[6] B. Standard, "Testing concrete", Recommendations for the, 1881.
[ 7] علی خیرالدین و نازنین کاشیها، " بررسی رفتار سازهای اتصال دال پس کشیده به ستون در معرض برش پانچ"، مجله مدلسازی در مهندسی، دوره 8 ، شماره 23 ، زمستان 1389 ، صفحه 59 - 37 .
[ 8]محمّدعلی لطفاللهی یقین و مجتبی ضیائیون، » بررسی رفتار ستونهای مرکب دو لایه تحت اثر متقابل نیروی محوری و لنگر خمشی « ،مجلۀ مدلسازی در مهندسی، دوره 10 ، شماره 31 ، زمستان 1391 ، صفحه 23 - 15 .
[9] R.E. Philleo, "Comparison of results of three methods for determining young’s modulus of elasticity of concrete", in Journal Proceedings, Vol. 51, No. 1, 1955, pp. 461-470.
[10] T. Gudra and B. Stawiski, "Non-destructive strength characterization of concrete using surface waves", Ndt & E International, Vol. 33, No. 1, 2000, pp. 1-6.
[11] J. Krautkrämer and H. Krautkrämer, Ultrasonic testing of materials. Springer Science & Business Media, 2013.
[12] D.S. Lane, "Evaluation of concrete characteristics for rigid pavements", 1998.
[13] V. Malhotra and P. K. Mehta, "Concrete technology: past, present, and future: proceedings of V. Mohan Malhotra symposium", American Concrete Institute,1994.
[14] V.M. Malhotra, "In situ/nondestructive testing of concrete", American Concrete Institute, 1984.
[15] V.M. Malhotra and N.J. Carino, CRC handbook on nondestructive testing of concrete, CRC press, 1991.
[16] J. Popovics, J. Achenbach and W.-J. Song, "Application of new ultrasound and sound generation methods for testing concrete structures", Magazine of Concrete Research, Vol. 51, No. 1, 1999, pp. 35-44.
[17] S. Popovics, "Analysis of the concrete strength versus ultrasonic pulse velocity relationship", Materials Evaluation, Vol. 59, No. 2, 2001, pp. 123-130.
[18] S. Popovics, N.M. Bilgutay, M. Caraoguz and T. Akgul, "High-frequency ultrasound technique for testing concrete", Materials Journal, Vol. 97, No. 1, 2000, pp. 58-65.
[19] S. Popovics, J.L. Rose and J.S. Popovics, "The behaviour of ultrasonic pulses in concrete", Cement and Concrete Research, Vol. 20, No. 2, 1990, pp. 259-270.
[20] A.E. Ben-Zeitun, "Use of pulse velocity to predict compressive strength of concrete", International Journal of Cement Composites and Lightweight Concrete, Vol. 8, No. 1, 1986, pp. 51-59.
[21] J.A. Bogas, M.G. Gomes and A. Gomes, "Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method", Ultrasonics, Vol. 53, No. 5, 2013, pp. 962-972.
[22] A. Jain, A. Kathuria, A. Kumar, Y. Verma and K. Murari, "Combined use of non-destructive tests for assessment of strength of concrete in structure", Procedia Engineering, Vol. 54, 2013, pp. 241-251.
[23] M.A. Musmar and N.A. Alhadi, "Relationship Between Ultrasonic Pulse Velocity and Standard Concrete Cube Crushing Strength", www.researchgate.net, 2008.
[24] S.K. Rao, P. Sravana and T.C. Rao, "Experimental studies in Ultrasonic Pulse Velocity of roller compacted concrete pavement containing fly ash and M-sand', International Journal of Pavement Research and Technology, Vol. 9, No. 4, 2016, pp. 289-301.
[25] M. Shariq, J. Prasad and A. Masood, "Studies in ultrasonic pulse velocity of concrete containing GGBFS", Construction and Building Materials, Vol. 40, 2013, pp. 944-950.
[26] J. Pallant and S.S. Manual, A step by step guide to data analysis using SPSS, Berkshire UK: McGraw-Hill Education, 2010.