Free vibration analysis of semi-rigid frames with elastic rotational restraints and inhomogeneous members

Document Type : Civil Article

Authors

1 Dept. of Civil Engineering, Faculty of Engineering, Quchan University of Technology, P. Box 94771-67335 Quchan, Iran.

2 M. Sc. Student of Structural Eng., Faculty of Civil Eng., Quchan University of Technology, Quchan, Iran

Abstract

The present research deals with the free vibration analysis of functionally graded (FG) frames with semi-rigid connection and elastic supports. Flexibility of elastic supports and semi-rigid connection are modeled with linear rotational springs. Moreover, inhomogeneous members (FGM) are modeled as a power function. Accordingly, based on the Euler–Bernoulli beam theory an exact formulation for free vibration analysis of FGM frames with various boundary conditions is obtained in terms of the Bessel functions. In other words, explicit relations are available to find the natural frequency and vibrational modes of semi-rigid frames with inhomogeneous members and elastic rotational restraints. In this way, dynamic properties such as the natural frequency and vibrational modes of these structures with various boundary conditions can be found. Comparing the outcomes with other research demonstrating the accuracy and efficiency of the proposed formulation. Finally, the effects of various parameters such as flexibility of connection and elastic supports, and the functionally graded material on the free vibration response of the structures are investigated.

Keywords

Main Subjects


 
[1]           H. Lohar, A. Mitra, and S. Sahoo, “Natural frequency and mode shapes of exponential tapered AFG beams on elastic foundation,” International Frontier Science Letters, vol. 9, Aug. 2016, pp. 9–25.
[2]           M. H. Ghayesh, “Mechanics of tapered AFG shear-deformable microbeams,” Microsyst Technol, vol. 24, no. 4, Apr. 2018, pp. 1743–1754.
[3]           H. Zeighampour and Y. Tadi Beni, “Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory,” Applied Mathematical Modelling, vol. 39, no. 18, Sep. 2015, pp. 5354–5369.
[4]           O. Rahmani, S. Hosseini, I. Ghoytasi, and H. Golmohammadi, “Free vibration of deep curved FG nano-beam based on modified couple stress theory,” Steel and Composite Structures, vol. 26, Apr. 2018, p. 607.
[5]           M. A. De Rosa and N. M. Auciello, “Free vibrations of tapered beams with flexible ends,” Computers & Structures, vol. 60, no. 2, Jul. 1996, pp. 197–202.
[6]           D. S. Sophianopoulos, “The effect of joint flexibility on the free elastic vibration characteristics of steel plane frames,” Journal of Constructional Steel Research, vol. 59, no. 8, Aug. 2003, pp. 995–1008.
[7]           R. Attarnejad, N. Manavi, and A. Farsad, “Exact solution for the free vibration of a tapered beam with elastic end rotational restraints,” in Computational Methods, G. R. Liu, V. B. C. Tan, and X. Han, Eds. Springer Netherlands, 2006, pp. 1993–2003.
[8]           S. A. Sina, H. M. Navazi, and H. Haddadpour, “An analytical method for free vibration analysis of functionally graded beams,” Materials & Design, vol. 30, no. 3, Mar. 2009, pp. 741–747.
[9]           Y. Huang and X.-F. Li, “A new approach for free vibration of axially functionally graded beams with non-uniform cross-section,” Journal of Sound and Vibration, vol. 329, no. 11, May 2010, pp. 2291–2303.
[10]         A. Shahba, R. Attarnejad, M. T. Marvi, and S. Hajilar, “Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions,” Composites Part B: Engineering, vol. 42, no. 4, Jun. 2011, pp. 801–808.
[11]         A.-Y. Tang, J.-X. Wu, X.-F. Li, and K. Y. Lee, “Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams,” International Journal of Mechanical Sciences, vol. 89, no. Supplement C, Dec. 2014, pp. 1–11.
[12]         X. Wang and S. Li, “Free vibration analysis of functionally graded material beams based on Levinson beam theory,” Appl. Math. Mech.-Engl. Ed., vol. 37, no. 7, Jul. 2016, pp. 861–878.
[13]         S. H. Hashemi, H. B. Khaniki, and H. B. Khaniki, “Free vibration analysis of functionally graded materials non-uniform beams,” International Journal of Engineering - Transactions C: Aspects, vol. 29, no. 12, Nov. 2016, p. 1734.
[14]         M. Rezaiee-Pajand and A. R. Masoodi, “Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections,” Journal of Vibration and Control, vol. 24, no. 9, May. 2018, pp. 1787–1808.
[15] سید علی احمدی، هادی پور­شهسواری و جعفر اسکندری­جم، "تحلیل کمانش سه بعدی پانل­های استوانه­ای ساخته شده از مواد هدفمند (FGM) تحت بارگذاری حرارتی مختلف"، نشریه مدل‌سازی در مهندسی، دوره 14، شماره 46، پاییز 1395، صفحه 39- 50.
[16] امید رحمانی و رضا بیات، "مدلسازی کنترل ارتعاشات تیر کامپوزیتی چند لایه با استفاده از لایه­های مگنتواستریکتیو"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 2- 13.
[17] امیر حشمت خدمتی بازکیایی، حمید دهقان طرزجانی و نادر محمدی، "ارتعاشات آزاد ورق نازک مواد مدرج تابعی بر بستر الاستیک وینکلر به کمک روش المان کوادراچر دیفرانسیلی"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 89- 99.
[18]         D. Ghazaryan, V. N. Burlayenko, A. Avetisyan, and A. Bhaskar, “Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method,” J Eng Math, vol. 110, no. 1, Jun. 2018, pp. 97–121.