Comprehensive Modeling of the Depletion-mode MOS Capacitor for Circuit Simulation

Document Type : Power Article

Authors

1 Assistant Professor, Biomedical Engineering Department, Hamedan University of Technology, Hamedan, 65169-13733, Iran

2 Assistant Professor, Biomedical Engineering Department, Hamedan University of Technology, Hamedan, 65169-13733, Iran,

Abstract

A comprehensive model is developed for a MOS capacitor implemented using an n-channel depletion-mode MOSFET fabricated in a submicron CMOS technology, which accounts for the voltage dependence of the MOS capacitance over the entire range of operating voltages. Notably, the model, whose active component is derived based on the industry-standard BSIM3 MOSFET model, fits the measured capacitance-voltage data with a goodness of fit characterized by coefficient of correlation of 0.99. By considering the gate capacitance and the associated series resistance as a distributed RC network, a realistic compact subcircuit representation is obtained for the MOS capacitor, which allows modeling of the limitations imposed by the series resistance on high-frequency performance as well as the quality factor. The model is also validated based on SPICE simulations with the channel resistance associated with the inversion layer modeled as a voltage-controlled resistor in order to account for the nonlinearity of the parasitic series resistance associated with the MOS capacitor.

Keywords


[1] محمّد آسیایی، «طراحی رجیستر فایل توان پایین در فنّاوری 90 نانومتر CMOS»، مجلة مدل‌سازی در مهندسی، دورة 16، شمارة 54،  پاییز 1397، صفحة 69- 81.
[2] محمود فلاح و محمّدهاشم واجد سمیعی، «طراحی FSS میان گذر پچ استریپ مربعی با استفاده از مدل مداری معادل»، مجلة مدل‌سازی در مهندسی، دورة 13، شمارة 41،  تابستان 1394، صفحة 113- 125.
]3[ آتیلا اسکندنژاد، عبدالرضا رحمتی و ادیب ابریشمی‌فر، «مدل‌سازی و تحلیل عددی مبدّل‌های تابریستوری به روش رانگ-کوتای چندمتغیّره»، مجلة مدل‌سازی در مهندسی، دورة 10، شمارة 29،  تابستان 1391، صفحة 33- 42.
[4]  T.H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, New York, 1998.
[5] R. Sarpeshkar, Ultra Low Power Bioelectronics, Cambridge University Press, New York, 2010.
[6] T. Ando, U. Kwon, S. Krishnan, M.M. Frank and V.Narayanan, "High-𝜅 oxides on Si:MOSFET gate dielectrics", in Thin Films on Silicon: Electronic And Photonic Applications, 2016, pp. 323–367.
[7] N. Novkovski and E. Atanassova, "Frequency Dependence of 𝐶-𝑉 Characteristics of MOS Capacitors Containing Nanosized High-𝜅 Ta2O5 Dielectrics", Advances in Materials Science and Engineering, Volume 2017, doi:10.1155/2017/9745934, pp. 1–11.
[8] H. Zhang, L. Yuan, X. Tang, J. Hu, J. Sun, Y. Zhang, Y, Zhang and R. Jia, "Influence of Metal Gate Electrodes on Electrical Properties of Atomic-Layer-Deposited Al-Rich HfAlO/Ga2O3 MOSCAPs", IEEE Trans. Electron Devices, Vol. 67, No. 4, 2020, pp. 1730-1736.
[9] Y. Xu, X. Hu, Y. Dong, B. Zhang and Y. Ni, "Highly-Efficient, Ultra-Compact and Polarization-Insensitive Electro-Absorption Modulator Driven by Hybrid Silicon-Indium Tin Oxide-Based MOS Capacitors",  IEEE Journal of Quantum Electronics, Vol. 56, No. 1,  2020, pp. 1- 9.
[10] J.H. Tsai,  S.A. Ko, C.W. Wang, Y.C. Yen,  H.H. Wang, P.C. Huang, P.S. Lan and M.H. Shen, "A 1 V Input, 3V-to-6V Output, 58%-Efficient Integrated Charge Pump With a Hybrid Topology for Area Reduction and an Improved Efficiency by Using Parasitics", IEEE Journal of Solid-State Circuits, Vol. 50, No. 11, 2015, pp. 2533 – 2548.
[11] L. Zhu and S. McNamara, "Low Power Tunneling Current Strain Sensor Using MOS Capacitors", Journal of Microelectromechanical Systems, Vol. 24, No. 3,  2015, pp. 755 -762.
[12] C. Li, J.C. Li, J. Shang, W.X. Li and S.Q. Xu, "Multitime Programmable Memory Cell With Improved MOS Capacitor in Standard CMOS Process", IEEE Transactions on Electron Devices, Vol. 62, No. 8, 2015, pp. 2517 -2523.
[13] A. Kahraman, E. Yilmaz, A. Aktag and S. Kaya, "Evaluation of Radiation Sensor Aspects of Er2O3 MOS Capacitors under Zero Gate Bias", IEEE Transactions on Nuclear Science, Vol. 63, No. 2, 2016, pp. 1284-1293.
[14] Y. Xuan, Ch. Mousoulis, A. Kumar, Ch.I. Elmiger, S. Scott, D.J. Valentino and D. Peroulis, “3D MOS-capacitor-based ionizing radiation sensors”, Proceedings of 2017 IEEE SENSORS Conference, Glasgow, 2017, pp. 1-3.
[15] T. Rabuske and J.  Fernandes, "A SAR ADC With a MOSCAP-DAC", IEEE Journal of Solid-State Circuits, Vol. 51, No. 6, pp. 1410-1422, 2016.
[16] R.K. Palani and R. Harjani, "A 4.6mW, 22dBm IIP3 all MOSCAP based 34–314MHz tunable continuous time filter in 65nm", Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), September 2015, 28-30.
[17] H. Amini Moghadam, S. Dimitrijev, J. Han, D. Haasmann and A. Aminbeidokhti, "Transient-Current Method for Measurement of Active Near-Interface Oxide Traps in 4H-SiC MOS Capacitors and MOSFETs", IEEE Trans. Electron Devices, Vol. 62, No. 8, 2015, pp. 2670-2674.
[18] X. Zhang, C. Cheng, H. Zhu, T. Yu, D. Zhang and B. Chen, "A New MOS Capacitance Correction Method Based on Five-Element Model by Combining Double-Frequency C-V  and  I-V Measurements", IEEE Electron Device Letters, Vol. 37, No. 10, 2016, pp. 1328–1331.
[19] H.H. Lin and J.G. Hwu, "Surface Nonuniformity-Induced Frequency Dispersion in Accumulation Capacitance for Silicon MOS(n) Capacitor", IEEE Trans. Electron Devices, Vol. 63, No. 7, 2016, pp. 2844–2851.
[20] X. Zhang, S. Zhang, H. Zhu, X. Pan, Ch. Cheng, T. Yu, X. Xiangping, L. Yi, G. Xing and D. Zhang, "Frequency dispersion analysis of thin dielectric MOS capacitor in a five-element model", Journal of Physics D: Applied Physics, 2018.
[21] P. Pande, S Dimitrijev, D. Haasmann, H. Amini Moghadam, P. Tanner and J. Han, "Energy-Localized Near-Interface Traps Active in the Strong-Accumulation Region of 4H-SiC MOS Capacitors", IEEE Transactions on Electron Devices, Vol. 66, No. 4, 2019, pp. 1704 - 1709.
[22] R. Moosavi, S. Jamasb, "Accurate Modeling of the Polysilicon-Insulator-Well (PIW) Capacitor in CMOS Technologies", Cumhuriyet Science Journal (CSJ), Vol. 36, No.3, 2015, pp. 216-221.
[23] R. Rios, N.D. Arora, C.L. Huang, N. Khalil, J. Faricelli and L. Gruber, "A physical compact MOSFET model, including quantum mechanical effects, for statistical circuit design applications", Proceedings of International Electron Devices Meeting. IEEE, 1995, pp. 937-940.
[24] W. Liu and C. Hu, "BSIM3v3 mosfet model", International Journal of High Speed Electronics and Systems, Vol. 9, No. 03, 1998, pp. 971-701.
[25] W. Liu, X. Jin, Y. King and C. Hu ,"An Efficient and Accurate Compact Model for Thin-Oxide-MOSFET Intrinsic Capacitance Considering the Finite Charge Layer Thickness", IEEE Transactions on Electron Devices, Vol. 46, No. 5, 1999, pp.1070-1072.
[26] D.E. Ward, R. W. Dutton, “A Charge-oriented Model for MOS Transistor Capacitances”, IEEE J. of Solid States Circuits, Vol. 13, No. 5, 1978.
[27] H.J.M. Veendrick, in Nanometer CMOS ICs from basics to ASICS, First Edition, Springer, New York, 2008.
[28] T. Uchino, T. Shiba, K. Ohnishi, A. Miyauchi, M. Nakata, Y. Inoue and T. Suzuki, "A raised source/drain technology using in-situ P-doped SiGe and B-doped Si for 0.1-μm CMOS ULSIs", Proceedings of the International Electron Devices Meeting, IEDM Technical Digest, December 1997.
[29] Y.S. Chauhan, D.D. Duane, L.V. Sriramkumar, S. Khandelwal, J.P. Duarte, N. payvadosi, A. Niknejad and Ch. Hu, FinFET Modeling for IC simulation and Design Using the BSIM-CMG Standard. San Diego: Academic Press, 2015.
[30] X. Duan, P. Lu, W. Li and J.C.S. Woo, "Parasitic resistance modeling and optimization for 10nm-node FinFET", Proceedings of the IEEE’s 18th International Workshop on Junction Technology (IWJT), 2018.