Sensor-less Predictive Control of Induction Motor with Super-Twisting Sliding Observer and Fuzzy Adaptive Estimator

Document Type : Power Article

Authors

1 Electronic & Computer Department, University Of Zanjan, Zanjan, Iran

2 University of Zanjan

Abstract

Induction motor is one of the most widely used electric motors in the industry and even in everyday life. Various controllers are provided for this motor, one of which is the predictive control method. The main problem with this new method is the inaccuracy of the motor parameters and the lack of access to accurate system information. This inaccuracy can lead to errors in the controller operation. In this paper, the predictive control of induction motors is considered. To improve the performance of this controller, a super twisting sliding observer is used to reduce the effect of uncertainties in the structure of the induction motor. A model reference adaptive estimator has also been used to improve speed estimation in sensor-less control and online estimation of stator resistance. Finally, by adding a fuzzy controller, improvements in the performance of this estimator have been achieved. The simulation results indicate the optimal performance of this method in eliminating the uncertain effect and optimal control of the induction motor.

Keywords


[1] M. Nemec, D. Nedeljkovic, and V. Ambrozic, “Predictive Torque Control of Induction Machines Using Immediate Flux Control,” IEEE Transaction Industrial Electronics,Vol. 54, No. 4, August 2007, pp. 2009–2017.
[2] S. Kaboli, M. R. Zolghadri, D. Roye, J. Guiraud, and J.C. Crebier, “Design and implementation of a predictive controller for reducing the torque ripple in direct torque control based induction motor drives”, IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), 2004, Vol. 1, pp. 476–481.
[3] J. Rodriguez and P. Cortes, “Predictive control of power converters and electrical drives”, Vol. 40. John Wiley and Sons, 2012.
[4] F. Wang, S. A. Davari, Z. Chen, Z. Zhang, D. A. Khaburi, J. Rodriguez, and R. Kennel, “Finite control set model predictive torque control of induction machine with a robust adaptive observer”, IEEE Transaction Industrial Electronics, Vol. 64, No. 4, 2016, pp. 2631–2641.
[۵] مهرداد جعفر بلند و محمد هادی ریسمانی، "یک روش کنترل بدون حسگر جدید برای موتورهای DC بدون جاروبک مبتنی بر شار پیوندی خط به خط"، مدل سازی در مهندسی، دوره 15، شماره 49، 1396، صفحات 139-150.
 [6] S. A. Davari and D. A. Khaburi, “Sensorless predictive torque control of induction motor by means of reduced order observer”, 2nd Power Electronics, Drive Systems and Technologies Conference, 2011, pp. 484–488.
[7] H. Xie, Q. Chen, Y. Tang, R. Kennel, F. Wang, A. Xia, Z. Zhang, and J. Rodriguez, “Sliding-Mode MRAS based Encoderless Predictive Torque Control for Induction Machine”, IEEE International Symposium on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), 2019, pp. 1–4.
[8] S. A. Davari, D. A. Khaburi, F. Wang, and R. Kennel, “Robust sliding mode voltage model observer for sensorless PTC of induction motors,” in Power Electronics and Drive Systems Technology (PEDSTC), 2012 3rd, 2012, pp. 32–37.
[9] H. Miranda, P. Cortes, J. I. Yuz, and J. Rodriguez, “Predictive Torque Control of Induction Machines Based on State-Space Models,” IEEE Transaction Industrial Electronics, Vol. 56, No. 6, June 2009, pp. 1916–1924.
[10] محمدرضا حسن زاده و فرشید کی نیا، "ارائه یک مدل جدید برای جستجوی ترکیبی هوشمند جهت پیدا نمودن پاسخ بهینه سراسری مسایل مهندسی"، مدل سازی در مهندسی، دوره ۱۷، شماره ۵۸، 1398، صفحات ۸۱-۱۰۲.
[11] محمدرضا انصاری و ایمان همت, “بهینه سازی و کنترل خودروهای هیبریدی با در نظر گرفتن جرایم مربوط به آلایندگی و بر اساس الگوریتم PSO"، مدل سازی در مهندسی، دوره ۱۷، شماره 57، 1398، صفحات 227-239.
[12] H. Wang, Y. C. Liu, and X. Ge, “Sliding-mode observer-based speedsensorless vector control of linear induction motor with a parallel secondary resistance online identification”, IET Electric Power Applications, Vol. 12, No. 8, 2018, pp. 1215–1224.
[13] D. Liang, J. Li, and R. Qu, “Sensorless Control of Permanent Magnet Synchronous Machine Based on Second-Order Sliding-Mode Observer With Online Resistance Estimation”, IEEE Transactions Industry of Applications, Vol. 53, No. 4, July 2017, pp. 3672–3682.
[14] L. Zhang, H. Obeid, S. Laghrouche, and M. Cirrincione, “Second order sliding mode observer of linear induction motor”, IET Electric Power Applications, Vol. 13, No. 1, January 2019, pp. 38–47.
[15] L. Fridman, J. P. Barbot, and F. Plestan, Recent trends in sliding mode control, 2016.
[16] L. Zhao, J. Huang, H. Liu, B. Li, and W. Kong, “Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives”, IEEE Transaction Industrial Electronics, Vol. 61, No. 10, 2014, pp. 5280–5289.
[17] H. Wang, X. Ge, and Y. C. Liu, “Second-Order Sliding-Mode MRAS Observer-Based Sensorless Vector Control of Linear Induction Motor Drives for Medium-Low Speed Maglev Applications”, IEEE Transaction Industrial Electronics, Vol. 65, No. 12, December 2018, pp. 9938–9952.
[18] J. A. Moreno and M. Osorio, “Strict lyapunov functions for the super-twisting algorithm,” IEEE Transactions on Automatic Control, Vol. 57, No. 4, April 2012, pp. 1035–1040.
[19] A. Levant, “Principles of 2-sliding mode design”, Automatica, Vol. 43, No. 4, April 2007, pp. 576–586,.
[20] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, “Siding Mode Control and Observation”, New York, NY, USA: Birkhauser: Springer, 2014.
[21] F. Wang, “Model Predictive Torque Control for Electrical Drive Systems with and without an Encoder”, Technische Universität München, 2014.
[22] M. Safaeian, A. Jalilvand, and A. Taheri, “A MRAS based Model Predictive Control for Multi-Leg based Multi-Drive System Used in Hot Rolling Mill Applications”, IEEE Access, 2020, pp. 1–1.
[23] Y.-C. Luo and C.-C. Lin, “Fuzzy MRAS based speed estimation for sensorless stator field oriented controlled induction motor drive”, International Symposium on Computer, Communication, Control and Automation (3CA), Vol. 2, 2010, pp. 152–155.
[24] J. Fei and Z. Feng, “Adaptive Fuzzy Super-Twisting Sliding Mode Control for Microgyroscope”, Complexity, Vol. 2019, 2019, p. 6942642.
[25] P. M. Vallejo LLamas and P. Vega, “Analytical fuzzy predictive control applied to wastewater treatment biological processes”, Complexity, Vol. 2019, 2019.