Numerical Stress, Modal and Thermal Analysis of 1U Cubesat Structural Subsystem

Document Type : Mechanics article

Authors

1 mechanical engineering department, faculty of engineering, Quchan University of Technology, Quchan, Iran

2 Msc student, mechanical engineering department, Quchan University of Technology

Abstract

The use of multi-unit cubic satellite (CubeSats), designed nowadays, in accordance with a certain standard, have made any research aimed towards their optimization, quite significant. In the present paper, studies one such common satellite design structure known as “1U”. Our study is carried out with a focus on the structure subsystem, which is of high consequence, due to the direct relationship, it would establish with other subsystems. Informed by the conditions, such satellite structure is exposed to, the present paper, defines the dynamic equations governing its motion, as well as relevant heat, modal and static equations, and utilizes the finite element method (FEM), in several separate portions to solve them. To attain a higher accuracy, our study takes into account, the standards and design specifications for such satellites. Analysis indicate temperature variations on the outer structure of the satellite is in a range from −19.79°C up to 18.85. Moreover, the highest stress value taken by the satellite structure is 45.42 MPa, demonstrating structural resilience versus stress excreted. The first mode of satellite structural resonance is 467.647 Hz. reliability factor was obtained as well, from an investigation of stress values inside the structure. Put together, the results from the analyses have allowed us to conclude that the structure, is in fact resilient, against the excreted stress. Supplementary output from the present study is also valuable, in provision of various prerequisites to an optimal design of the structure subsystem, as well as several other subsystems.

Keywords


[1] G. Fiedler and J. Straub, "CubeSat mechanical design: creating low mass and durable structures", Sensors and Systems for Space Applications X, Vol. 10196, May 2017.
[2] "NASA, Cubesats_initiative", [Online]. Available: https://www.nasa.gov/directorates/heo/home/CubeSats_initiative, [Accessed: 19-Jul-2019].
[3] A. Mehrpavar et al., "The CubeSat Program: Cubesat design specification", California Polytechnic State University, USA, Technical note, Rev. 13, 2014.
[4] N. Zosimovych, "1U CubeSat Platform Design", International Journal of Aerospace Sciences, No. 8, July 2020, pp. 1-7.
[5] C. Spivey, and E. Gizzi, "A Modular, Open Source CubeSat Structure." AIAA Scitech 2021 Forum, 4 Jan 2021.‏
[6] M. Macdonald and V. Badescu, "The international handbook of space technology", Springer, German, 2014.
[7] T. Nemetzade, "Dimensional Analysis for the Design of Satellites in LEO", PhD Thesis, Massachusetts Institute of Technology, USA, 2010.
[8] A. Ampatzoglou and V. Kostopoulos, "Design, Analysis, Optimization, Manufacturing, and Testing of a 2U Cubesat", International Journal of Aerospace Engineering, No. 15, June 2018, pp. 1-15.
[9] H. Oh, S. Jeon, and S. Kwon, "Structural Design and Analysis of 1U Standardized STEP Cube Lab for On-Orbit Verification of Fundamental Space Technologies", International Journal of Materials, Mechanics and Manufacturing, Vol. 2, No. 3, August 2014, pp. 239-344.
[10] J. E. Herrera-Arroyave, B. Bermúdez-Reyes, J. A. Ferrer-Pérez, and A. Colín, "CubeSat system structural design", International Astronautical Congress, Guadalajara, Mexico, Vol. 67, September 2016, pp. 1–5.
[11] D. Geeroms, S. Bertho, M. De Roeve, R. Lempens, M. Ordies, and J. Prooth, "ARDUSAT, an Arduino-Based CubeSat Providing Students with the Opportunity to Create their own Satellite Experiment and Collect Real-World Space Data", ESA Symposium on European Rocket and Balloon Programes and Related Research, Tromso, Norway, Vol. 22, September 2015, pp. 643-647.
[12] B. Peters, "Ardusat Space Program: Training the Next Generation of Satellite Scientists and Engineers", Proceedings of the Small Satellite Conference, Utah, USA, Vol. 30, July 2016, pp. 1-6.
[13] R. Davis, "Cubesat Tech Demo P-POD", Hawk Institute of Space Sciences, USA, 2007.
[14] W. Lan, R. Munakata, R. Nugent, and D. Pignatelli, Poly Picosatellite Orbital Deployer Mk . III Rev. E User Guide, 2014.
[15] J. M. Houghton, "Spacecraft systems Engineering: Spacecraft Structures", 4th ed., Wiley, USA, 2004, p. 325.
[16] G. E. Totten and D. S. MacKenzie, Handbook of Aluminum: Alloy Production and Materials Manufacturing. CRC Press, Vol. 2, Marcel Dekker, USA, 2003.
[17] "LEO parameters", [Online]. Available: http://www.spaceacademy.net.au/watch/track/leopars.htm. [Accessed: 19-Jul-2019].
[18] مهران نصرت‌الهی، منصوره عباسی، نازیلا برامکی، مصطفی وفایی و میثم دلالت، "طراحی مفهومی ریز ماهواره مکعبی سنجش از دور"، کنفرانس بین‌المللی انجمن هوافضای ایران، تهران، ایران، 4 تا 6 اسفند، دوره 15، 1394.
[19] C. J. Savage, "Spacecraft systems Engineering: Thermal Control of Spacecraft", 4th ed., Wiley, USA, 2004, p. 355.
[20] سید علی احمدی، هادی پورشهسواری و جعفر اسکندری جم، " تحلیل کمانش سه‌بعدی پانل‌های استوانه‌ای ساخته‌شده از مواد هدفمند (FGM ) تحت بارگذاری حرارتی مختلف"، نشریه مدل‌سازی در مهندسی، دوره 14، شماره 46، پاییز 1395، صفحه 39 - 50.
[21] D. Dinh, "Thermal Modeling of Nanosat", Master Thesis, San Jose State University, USA, 2012.
[22] J. Claricoats and M. dakka Sam, "Design of Power , Propulsion , and Thermal Sub-Systems for a 3U CubeSat Measuring Earth’s Radiation Imbalance", Aerospace, Vol. 5, No. 2, June 2018, p. 63.
[23] زهرا تبریزیان، مرتضی حسینعلی بیگی و غلامرضا قدرتی امیری، " تشخیص آسیب در سازه‌های فلزی با استفاده از اطلاعات خیز استاتیکی و الگوریتم ژنتیک"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 41، تابستان 1394، صفحه 147 - 158.
[24] C. Quiroz-Garfias, G. Silva-Navarro, H. Rodriguez-Cortes, "Finite Element Analysis and Design of a CubeSat Class Picosatellite Structure", International Conference on Electrical and Electronics Engineering, Mexico City, Mexico, Vol. 4, September 2007, pp. 294-297.
[25] A. Ampatzoglou, A.Baltopoulos, A.Kotzakolios, and V. Kostopoulos, "Qualification of  Composite Structure for Cubesat Picosatellites as a Demonstration for Small Satellite Elements", Vol. 7, No. 1, 2014, pp. 1-10.
[26] احسان جمشیدی، محمدرضا آشوری و حمید دائیان، "کاربرد آزمون مودال در بهبود مدل‌های عددی سازه‌ها"، نشریه مدل‌سازی در مهندسی، دوره 6، شماره 15، زمستان 1387، صفحه 72 - 81.
[27] A. C. Okolie, S. O. Onuh, Y. T. Olatunbosun, and M. S. Abolarin, "Design Optimization of Pico-satellite Frame for Computational Analysis and Simulation", American Journal of Mechanical and Industrial Engineering, Vol. 1, No. 3, 2016, pp. 74–84.
[28] S. U. Qaisar, M. J. Ryan, and S. L. Tuttle, "A Framework for Small Satellite Architecture Design", INCOSE International Symposium, Bangalore, India, Vol. 26, July 2016, pp. 1747-1758.