Experimental study on the use of aluminum oxide and copper oxide nanoparticles to improve the thermal hydraulic performance of Peugeot 206 radiator

Document Type : Mechanics article

Authors

1 Department of Mechanical Engineering, Vali-e-Asr University, Rafsanjan, Iran

2 Department of Mechanical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

Abstract

In this work, Nusselt number and friction factor in the tube side of car radiator which is a type of fin and tube heat exchanger are experimentally determined. Two types of nanofluids including water-Al2O3 and water-CuO are used and experimental results are performed for three nanoparticles volumetric concentration (PVC) and for Reynolds number in the range of 3000-15000. The results show that, both Nusselt number and friction factor increases in the case of nanofluid compared with the base fluid and this increase is higher in the CuO nanofluid. For example, at Re=3000, 1.92%, 15.08% and 22.46% improvement in Nusselt number are observed for Al2O3 nanofluid compared with base fluid respectively for PVC=0.025, 0.050 and 0.075. The mentioned improvement for CuO nanofluid are obtain 10.89%, 35.50% and 46.11%, respectively. In addition, at Re=3000, 15.27%, 9.64% and 13.80% increases in friction factor are observed for Al2O3 nanofluid compared with base fluid respectively for PVC=0.025, 0.050 and 0.075. The mentioned increases for CuO nanofluid are obtain 7.71%, 13.97% and 19.59%, respectively. Then, correlations for Nusselt number and friction factor with acceptable precision are derived.

Keywords


[1] W. M. Kays, and A. L. London, "Compact heat exchangers", 3th edition, Krieger Publishing Company, 1984.‏
[2] S. Akbarzade, K. Sedighi, and M. Farhadi, "Experimental investigation of force convection heat transfer in a car radiator filled with SiO2-water nanofluid", International Journal of Engineering, Vol. 27, No. 2, February 2014, pp. 333-340.‏
[3] H. Hajabdollahi, and Z. Hajabdollahi, "Investigating the effect of nanoparticle on thermo-economic optimization of fin and tube heat exchanger", Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 231, No. 6, December 2017, pp. 1127-40.‏
[4] V. Vasu, K. R. Krishna, and A. C. S. Kumar, "Thermal design analysis of compact heat exchanger using nanofluids", International Journal of Nano manufacturing, Vol. 2, No. 3, January 2008, pp. 271-288.
[5] ‏D. G. Subhedar, B. M. Ramani, and A. Gupta, "Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant", Case studies in thermal engineering, Vol. 11, November 2018, pp. 26-34.‏
[6] S. Mert, H. Yasar, U. Durmaz, A. Topuz, A. Yeter, and T. Engin, "An experimental study on cooling performance of a car radiator using Al2O3-ethylene glycol/water nanofluid", Thermal Science, Vol. 25, 2021, pp. 801-809.‏
[7] ابوالفضل نعمت پورکشتلی و محسن شیخ الاسلامی، "بررسی عددی رفتار انجماد درون مبدل حرارتی سه لوله‌ای حاوی مواد تغییر فاز دهنده با استفاده از فین"، نشریه مدل سازی در مهندسی, دوره 17، شماره 57، تابستان 1398، صفحه 338-327.
[8] کامیارکمانی و روح اله رفعی، "بررسی انتقال حرارت و جریان آرام نانوسیال از دیدگاه قانون دوم ترمودینامیک در یک مبدل حرارتی جریان مخالف"، نشریه مدل سازی در مهندسی، دوره 13، شماره 41، تابستان1394، صفحه 57-47.
[9] محمد همت اسفه و سعید اسفنده، " بررسی آزمایشگاهی رفتار رئولوژیکی نانوسیال اکسید مس پایه آب (%80)- اتیلن‌گلیکول (%20) و آنالیز حساسیت ویسکوزیته نسبت به پارامترهای موثر (دما و کسر حجمی)"، نشریه مدل سازی در مهندسی، doi: 10.22075/jme.2017.11100.1073.
[10] N. Asokan, P. Gunnasegaran, and V. V. Wanatasanappan, "Experimental investigatio on the thermal performance of compact heat exchanger and the rheological properties of low concentration mono and hybrid nanofluids containing Al2O3 and CuO nanoparticles", Thermal Science and Engineering Progress, Vol 20, December 2020, pp. 2451-9049.
[11] R. K. Shah, and D. P. Sekulic, "Fundamentals of heat exchanger design", 1th edition, John Wiley and Sons, 2003. 
[12] R. S. Vajjha, D. K. Das, and D. P. Kulkarni, "Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids", International Journal of Heat and Mass Transfer, Vol. 53, No. 21-22, Octobr 2010, pp. 4607-4618.‏
[13] R. S. Vajjha, and D. K. Das, "Experimental determination of thermal conductivity of three nanofluids and development of new correlations", International Journal of Heat and Mass Transfer, Vol. 52, No. 21-22, Octobr 2009, pp. 4675-4682.‏
[14] J. Dong, L. Su, and Q. Chen, "Experimental study on thermal–hydraulic performance of a wavy fin-and-flat tube aluminum heat exchanger", Applied Thermal Engineering, Vol. 51, No. 1-2, March 2013, pp. 32-39.‏
[15] M. Elsebay, I. Elbadawy, M.H. Shedid, and M. Fatouh, "Numerical resizing study of Al2 O3 and CuO nanofluids in the flat tubes of a radiator", Applied Mathematical Modelling, Vol. 40, No. 13-14, July 2016, pp. 6437-6450.‏
[16] D. Junqi, C. Jiangping, C. Zhijiu, Z. Yimin, and Z. Wenfengb, "Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers", Applied Thermal Engineering, Vol. 27, No. 11-12, August 2007, pp. 2066-2073.‏