Introduction of the structure, modeling and analysis of junctionless heterostructure Si/Si1-xGex transistor

Document Type : Power Article

Authors

1 Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2 Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

3 Department of Electrical Engineering, Islamic Azad University (Central Branch), Tehran, Iran

Abstract

In Junctionless transistors, the source-channel-drain doping is of the same type and level, hence, the process of making Junctionless transistors is easier than inverting mode transistor. Despite this benefit, reducing the transconductance of Junctionless transistors due to reduced carrier velocity makes the operation of this type of transistor difficult for analog, radio frequency and high frequency noise usages. An effective method that increases the trans-conductance of Junctionless transistors without reducing efficiency is using a heterogeneous structure in the channel. In the present article, using Si and Si1-xGex materials in the channel is proposed and modeled so as to enhance the transconductance of Junctionless transistor. The special structure of the proposed transistor, called JL-Si / Si1-xGex, eliminates the intervalley scattering between valleys of ∆2 and ∆4. This increases the velocity of the electron and consequently enhances the transconductance. The outcomes of the modelling of the proposed JL-Si / Si1-xGex heterostructure transistor indicate the maximum transconductance of 2.5 mS / um, which increases 50% compared to similar silicon transistor. Moreover, calculations which are extracted from modelling demonstrate that the proposed JL-Si / Si1-xGex transistor has a unity gain cutoff frequency of 750 GHz, minimum noise figure of 65.0 dB, and an available gain of 28.5 dB. The parameters of cut-off frequency, minimum noise figure and available gain of the proposed JL-Si / Si1-xGex transistor have been improved by 34%, 62.5% and 53%, respectively, compared to the JL-Si transistor with similar dimensions. The proposed device can be suitable candidate for RFIC applications.

Keywords


[1] R. Muralidhar, I. Lauer, J. Cai, D. J. Frank and P. Oldiges, "Toward Ultimate Scaling of MOSFET", IEEE Transactions on Electron Devices, Vol. 63, NO. 1, 2016, pp. 524-526.
[2] J. P. Colinge, C. W. Lee, I. Ferain, N. D. Akhavan, R. Yan, P. Razavi, R. Yu, A. N. Nazarovand , and R. T. Doria, "Reduced electric field in junctionless transistors", Applied Physics Letters, Vol. 96, NO. 7, 2010, pp. 073510.
]3[ علی اصغر اروجی و سارا حیدری، "طراحی و شبیه سازی یک ترانزیستورSOI-MOSFET چند لایه‏ ای برای بهبود اثراتخود گرمائی"، نشریه مدل سازی در مهندسی، دوره 8، شماره 23، زمستان 1389، صفحه 19-24.
]4[ بهروز عبدی تهنه و علی نادری، "ساختار جدید ترانزیستور اثر میدانی نانو لوله کربنی تونل زنی با دوپینگ خطی در ناحیه درین: شبیه‌سازی عددی کوانتومی"، نشریه  مدل سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه  109-117.
[5] A. Kumar, M. M. Tripathiand, and R. Chaujar, "Comprehensive analysis of sub-20 nm black phosphorus based junctionless-recessed channel MOSFET for analog/RF applications", Superlattices and Microstructures, Vol. 116, April 2018, pp. 171-180.
]6[ علی نادری و مریم قدرتی، "بهبود عملکرد ترانزیستوراثر میدانی نانولوله کربنی تونل‌زنی در حضور ناهمپوشان"، نشریه  مدلسازی در مهندسی، دوره 17، شماره 59، زمستان 1398، صفحه  215-224.
[7] M. A Raushan, N. Alam, M. J. Siddiqui, "Performance enhancement of junctionless tunnel field effect transistor using dual-k spacers", Journal of Nanoelectronics and Optoelectronics, Vol. 13, NO. 6, June 2018, pp. 912-920.
[8] A. Baidya, S. Baishyab, T. R. Lenkab, "Impact of thin high-k dielectrics and gate metals on RF characteristics of 3D double gate junctionless transistor", Materials Science in Semiconductor Processing, Vol. 71, 2017, pp. 413-420.
[9] G. A. Kumar, A. Raman, and N. Kumar, "Design and investigation of a novel charge plasma-based core-shell ring-TFET: analog and linearity analysis", IEEE Transactions on Electron Devices, Vol. 66, NO. 8, 2019, pp. 3506-3512.
[10] Y. Kim, J. Lee, Y. Cho, W. J. Lee, and S. Cho, "High-Speed Low-Power Junctionless Field-Effect Transistor with Ultra-Thin Poly-Si Channel for Sub-10-nm Technology Node", Journal of Semiconductor Technology and Science, Vol. 16, NO. 2, April 2016, pp. 159-165.
[11] N. D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.P. Colinge, "Improvement of carrier ballisticity in junctionless nanowire transistors",  Applied Physics Letters, Vol. 98, NO. 10, 2011, pp. 103510.
[12] Y. Chenand, R. Xu, "Analysis of the RF and noise performance of junctionless MOSFETs using Monte Carlo simulation", International Journal of Numerical Modeling: Electronic Networks, Devices and Fields, Vol. 27, NO. 5, September 2014, pp. 822-833.
[13] R. K. Baruah, R. P. Paily, "A dual-material gate junctionless transistor with high-k spacer for enhanced analog performance", IEEE Transactions on electron devices, Vol. 61, NO. 1, January 2014,  pp. 123-12.
[14] D. Roy, A. Biswas, "Sidewall spacer layer engineering for improvement of analog/RF performance of nanoscale double-gate junctionless transistors", Microsystem Technologies, Vol. 23, NO. 7, 2017, pp. 2847-2857.
[15] D. Ghosh, A. Kranti, "Impact of channel doping and spacer architecture on analog/RF performance of low power junctionless MOSFETs", Semiconductor Science and Technology, Vol. 30, NO. 1, January 2015, pp. 015002.
 [16] M. K. Anvarifard, Z. Ramezani, I. S. Amiri, A. Mahdavi Nejad, "A Nanoscale Modified band energy junctionless transistor with considerable progress on the electrical and frequency issue", Materials Science in Semiconductor Processing , Vol. 107, 2020, pp. 104849.
[17] T. w. Tang, S. Ramaswamy, and J. Nam, "An improved hydrodynamic transport model for silicon", IEEE Transactions on Electron Devices, Vol. 40, NO. 8, August 1993, pp. 1469-1477.
[18] D. Bohm, "Reply to a criticism of a causal re-interpretation of the quantum theory", Physical Review, Vol. 87, NO. 2, 1952, pp. 389.
[19] H. S. Bennett, and C. L. Wilson, "Statistical comparisons of data on band gap narrowing in heavily doped silicon: Electrical and optical measurements", Applied Physics, Vol. 55, NO. 10, 1984, pp. 3582-3587.
[20] C. Lombardi, S. Manzini,A. Saporito, and M. Vanzi, "A physically based mobility model for numerical simulation of nonplanar devices", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 7, NO. 11, 1988, pp. 1164-1171.
[21] S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R.Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, "Carrier-transport-enhanced channel CMOS for improved power consumption and performance", IEEE Transactions on Electron Devices, Vol. 55, NO. 1, 2007, pp. 21-39.
[22] B. Ghosh, P. Mondal, M. W. Akram, P. Bal and A. K. Salimath, "Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunneling effects in subthreshold regime", Journal of Semiconductors, Vol. 35, NO. 6, 2014, pp. 064001.
[23] T. Mizuno, Y. Moriyama, T. Tezuka, N. Sugiyama, and S. I. Takagi, "Single Source Heterojunction Metal–Oxide– Semiconductor Transistors for Quasi-Ballistic Devices: Optimization of Source Heterostructures and Electron Velocity Characteristics at Low Temperature", Japanese Journal of Applied Physics, Vol. 50, 2011, pp. 010107.
[24] M. E. Levinshtein, S. L. RumyantsevM. S. Shur, Properties of Advanced Semiconductor Materials, GaN, AIN, InN, BN, SiC, SiGe,1st ed.,John Wiley & Sons,Canada, 2001.
[25] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Comparative study of phonon‐limited mobility of two‐dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field‐effect transistors",  Journal of Applied Physics, Vol. 80, NO. 3, August 1996, pp. 1567-1577.
[26] J. Welser, J. L. Hoyt, S. Takagi, “Strain dependence of the performance enhancement in strained-Si n-MOSFETs”, Proceedings of 1994 IEEE International Electron Devices Meeting, IEEE, San Francisco, CA, USA,1994.
[27] H. Pardeshi, "Analog/RF performance of AlInN/GaN underlap DG MOS-HEMT", Superlattices and Microstructures, Vol. 88, 2015, pp. 508-517.
[28] B. Razavi, Design of analog CMOS integrated circuits, 2nded., McGraw Hill Education, USA, 2017.
[29] M. Lundstrom, "Elementary scattering  theory of the Si MOSFET", IEEE Electron Device Letters, Vol. 18, NO. 7, 1997, pp. 361-363.
[30] Atlas User’s Manual, Device Simulation Software, SILVACO International, Santa Clara, USA, 2012.
[31] R. A. Pucel, H. A. Haus, S. Hermann, "Signal and noise properties of gallium arsenide microwave field-effect transistors", Advances in Electronics and Electron Physics, Vol. 38, 1975, pp. 195–265.
[32] R. Rengel, J. Mateos, D. Pardo, T. Gonz´alez and M. J. Mart´ın, "Monte Carlo analysis of dynamic and noise performance of submicron MOSFETs at RF and microwave frequencies", Semiconductor Scienceand Technology, Vol. 16, NO. 11, October 2001, pp. 939–946.
[33] G. Dambrine, J. P. Raskin, F. Danneville, D. V. Janvier, J. P. Colinge and A. Cappy, "High-frequency four noise parameters of silicon-on insulator-based technology MOSFET for the design of low-noise RF integrated circuits", IEEE Transactions on Electron Devices, Vol. 46, NO. 8, August 1999, pp. 1733–1741.
[34] S. Cho, K. R. Kim, B.G. Park, and I. M. Kang, "RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs", IEEE Transactions on Electron Devices, Vol. 58, NO. 5, May 2011, pp. 1388–1396.
[35] M. W. Pospieszalski, “Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence", IEEE Transactions on Microwave Theory and Techniques, Vol. 37, NO. 9, September 1989, pp.1340–1350.
[36] A. Garg, B. Singh, and Y. Singh, "A new trench double gate junctionless FET: A device for switching and analog/RF applications" AEU-International Journal of Electronics and Communications, Vol. 118, May 2020, pp. 153140.
[37] M.Glücka, T.Hackbartha, M.Birkb, A. Haasb, E.Kohnb, U.Königa, “Design and fabrication of Si/SiGe n-type MODFETs”, Physica E: Low-dimensional Systems and Nanostructures, Vol. 2, NO. 1–4, July 1998, PP. 763-767.
[38] J. W. Klaus, A. W. Ott, A. C . Dillon, S. M. George, "Atomic layer controlled growth of Si3N4 films using sequential surface reactions”, Surface Science, Vol. 418, NO. 1, November 1998, pp. L14-L19.
[39] Lee, Sang-Oh, "Method for fabricating side contact in semiconductor device using double trench process”, Patent, Vol. 118, NO. 8, Oct 2013.