Numerical Analysis of Collapse of Polyurethane Foam Filled Composite Tubes Under Pressure Loading at Different Speeds

Document Type : Mechanics article

Authors

1 Assistant Professor, Department Of Mechanical Engineering, Shahrekord University, Shahrekord, Iran

2 Msc Graduate, Department Of Mechanical Engineering, Shahrekord University, Shahrekord, Iran

Abstract

Thin-walled energy-absorbing elements in compressive loading are widely used in the transportation industry, especially in automobile manufacturing, airplane manufacturing, and urban and intercity train construction. As a new idea, coaxial double-tube energy absorbers are used in this research. The execution method is based on simulation in ABAQUS explicit finite elements software. Based on the validated model, a parametric analysis has been carried out in order to extract the effect of structure thickness, loading angle and density of polyurethane foam on the amount of energy absorption. Examining the deformed geometry of the sample after loading, the dynamic loading coefficient and the effect of the load angle on the maximum value of the structure collapse to the initial length is one of the topics that has been taken into consideration. In the end, according to the design goals, which include the maximum amount of energy absorption, the lowest amount of initial maximum force and the lowest weight of the structure, the optimization process of the design variables, using the optimization algorithm and formulation of multiple goals and with the help of finite element software data, has been completed.

Keywords

Main Subjects


[1] Askeland, Science and Engineering of Materials, second edition, Chapman & Hall, 2020.
[2] V. Trefiilov, Ceramic and Carbon Matrix composite, 1st ed., Chapman & Hall, 2015.
[3] J. Marsolek, and H. G. Reimerdes, 2004, Energy absorption of metallic cylindrical shells with induced non axisymmetric folding patterns, International Journal of Impact Engineering, Vol. 30, 2004, pp. 1209-1223.
[4] X. Huang, Axisymmetric progressive crushing of circular tubes, International Journal of Crashworthiness, Vol. 8, 2003, pp. 87-95.
[5] A.K. Toksoy, Quasi-static axial compression behavior of empty and polystyrene foam filled aluminum tubes, MSc thesis, Izmir Institute of Technology, 2009.
[6] H. Kavi, Investigation of compression mechanical behaviour of aluminum foam filled metal tubes, Master of Science, Izmir Institute of Technology, 2004.
[7] M. Seitzberger, F. Rammerstorfer, H. Degischer and R. Gradinger, Crushing of axially compressed steel tubes filled with aluminium foam, Acta Mechanica, Vol. 125, 1997, pp. 93-105.
[8] M .Seitzberger, F.G. Rammerstorfer, R .Gardinger, H.P .Degischer, M .Blaimschein, C.Walch Experimental studies on the quasi-static axial crushing of steel columns filled with aluminum foam, International Journal of Solids and structures, Vol. 37, 2000, pp. 4125- 4147.
[9] M. Langseth, O. S. Hopperstad and A. G. Hanssen, Crash behaviour of thin walled aluminium members, Thin-Walled Structures, Vol. 32, 1998, pp. 127-150.
[10] T. Brabin, T. Christopher and B. Rao, Finite elements analysis of cylindrical pressure vessels having a misalignment in a circumferential joint, International Journal of Pressure Vessels and Piping, Vol. 87, 2010, pp. 197- 201.
[11] علی علوی­نیا و حامد خدابخش، "بررسی عددی تاثیر فاصله لوله­های جدارنازک متداخل بر رفتار مکانیکی و جذب انرژی آنها"، مجله مدلسازی در مهندسی، دوره 14، شماره 45، تیر 1395، صفحه 33-47.
[12] محمد جواد رضوانی؛ احسان برهانی؛ احسان الله شاهی، "ساخت فوم نانو کامپوزیت پلی‌یورتان سخت با استفاده از نانو ذرات SiC و بررسی خواص مکانیکی و جذب انرژی آن تحت بار دینامیکی"، مجله مدلسازی در مهندسی، دوره 16، شماره 53، تیر 1397، صفحه 1-7.
[13] نگین نگهبان واشقانی، محمد جواد رضوانی و محمد دامغانی نوری، "بررسی تجربی و شبیه‌سازی عددی جذب انرژی در لوله استوانه­ای پر شده از فوم پلی­یورتان با استفاده از آغازگر"، مجله مدلسازی در مهندسی، دوره 14، شماره 44، فروردین 1395، صفحه 69-78.
[14] E. Ventsel, T.  Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications, CRC Press, 2001.
[15] A. Ghamarian, M. Abadi, Axial crushing analysis of end-capped circular tubes, Thin Walled Structures, Vol. 49, 2011, pp.743–752.
[16] M.D. McKay, R.J. Bechman and W. J. Conover, A Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, Vol. 21, 1979, pp. 239-245.
[17] S. Hou, Q. Li, S. Long, X. Yang, L. Wei, Multiobjective optimization of multi-cell sections for the crashworthiness design, International Journal of Impact Engineering, Vol. 35, 2008, pp. 1355–1367.
[18] V. Novozhilov, Shell theory, Groningen, 1964.
[19] P. Santosa, S.T. Wierzbicki, A. G. Hanssen and M. Langseth, Experimental and numerical studies of foam-filled sections, International Journal of Impact Engineering, Vol. 24, 2003, pp. 509-534.
[20] M. Langseth, O.S. Hopperstad and A. G. Hanssen, Crash behaviour of thin walled aluminium members, Thin-Walled Structures, Vol. 32, 2001, pp. 127-150.
[21] Z. Ahmad and D.P. Thambiratnam, Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading, Computers & Structures, Vol. 87, 2009, pp. 186-197.