Mathematical modeling and investigating the effect of the area of the horizontal stabilizer on the stability of a single-main-rotor helicopter in forward flight

Document Type : Mechanics article

Authors

1 aerospace, Maleke Ashtar, Tehran, Iran

2 aerospace,Maleke Ashtar, Tehran, Iran

Abstract

This paper investigates the effect of the area of the horizontal stabilizer of a single-main-rotor helicopter on its dynamic responses, stability properties, and flight handling quality during forward flights. Taking linear aero-dynamical relations into account, and assuming a linear induced velocity for the rotor and two degrees of freedom of flapping and feathering for each blade, we have derived the six degrees of freedom nonlinear dynamical model of the helicopter consisting of a main rotor, tail rotor, horizontal stabilizer, vertical stabilizer, fuselage, and the thrust system. The paper covers our findings on the stability derivatives, the effect of the area of the horizontal stabilizer on the forward-flight stability of the helicopter. The results indicate that the trim flight conditions do not considerably change when the horizontal stabilizer area increases. Moreover, increasing the area of the horizontal stabilizer threefold has been found to improve the longitudinal stability of the helicopter—the poles of the open-loop system are transferred to the stability region. However, such stability is accompanied by a favorable overshoot and the settling time required for flight at level 1(ADS-33E); (overshoot less than 30% and the settling time less than 5 seconds.)

Keywords

Main Subjects


[1] K. Miyajima, "Analytical design of a high performance stability and control augmentation system for a hingeless rotor helicopter," Journal of the American Helicopter Society, vol. 24, no. 3, pp. 29-36, Jul 1979.
[2] C. W. Ellis, "Effects of rotor dynamics on helicopter automatic control system requirements," Aeronaut. Eng. Rev, vol. 12, no. 7, Jul 1953.
[3]   W. Johnson, "Technology Drivers in the Development of CAMRAD II." In American helicopter society aeromechanics specialists conference, San Francisco, California, 1994.
[4] R.  W. Prouty, “Helicopter performance, stability, and control,” PWS Engineering, University of Michigan, 1995.
 [5] S. Suresh, and N. Sundararajan, "An on-line learning neural controller for helicopters performing highly nonlinear maneuvers, “  Applied Soft Computing, vol. 12, no. 1, pp.360-371, Jan 2012.
[6] B. Kadmiry, P. Bergsten, and D. Driankov,  “Autonomous helicopter control using fuzzy gain scheduling,” in Robotics and Automation, 2001. Proceedings 2001 ICRA, IEEE International Conference on, 2001, vol. 3, pp. 2980-2985.
] 7[  عبداالله عباسی و سمانه آقاعمو، "طراحی کنترل تطبیقیl1 برای پایدارسازی سیستم‌های آشوبناک با وجود نامعینی در مدل"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 15-15.
]8[ حمید نوری سولا و بهار احمدی و عسکر عزیزی و امیر ریخته گر غیاثی، " مقاوم‌سازی سیستم شناور مغناطیسی با استفاده از کنترل‌کننده خطی‌ساز فیدبک گام به عقب با رویتگر اغتشاش غیر‌خطی"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 29-38.
] 9[  مهدی بقائی و حسین شاهوردی و محمود هاشمی‌نژاد، "مدل‌سازی آیروهیدروالاستیک توربین بادی با سکوی پایه کششی"، نشریه مدل‌سازی در مهندسی، دوره 10، شماره 30، پاییز 1391، صفحه 1-17.
[10] G.Vladislav, "Dynamic model for a miniature aerobatic helicopter." Handbook of unmanned aerial vehicles, 2015, pp. 279-306.
 
[11]  A. A. Wahab, R. Mamat, and S. S. Shamsudin,   “Control system design for an autonomous helicopter model in hovering using pole placement method, “  in Proceedings of the 1st Regional Conference on Vehicle Engineering and Technology, 2006, pp. 3-5.
[12] C. P. Sanders, P. A. DeBitetto, E. Feron, H. F. Vuong, and N. Leveson, “ Hierarchical control of small autonomous helicopters,” in Decision and Control, 1998. Proceedings of the 37th IEEE Conference on, 1998, vol. 4, pp. 3629-3634.
[13] J. A. Franklin, “Dynamics, control, and flying qualities of V/STOL aircraft, “Aiaa, 2002.