1-
[1] Gonzalez-Banos, H.H. Hsu, D., and Latombe, J.C., “Motion planning: Recent developments,” In S.S. Ge and F.L. Lewis, editors, Autonomous Mobile Robots: Sensing, Control, Decision-Making and Applications, CRC Press, 2006.
[2] Lozano-Pérez, T., and Wesley, M.A., “An algorithm for planning collision-free paths among polyhedral obstacles,” Communications of ACM, Vol. 22, No. 10, pp. 560–570, (1979).
[3] Vasseur, H.A., Pin, F.G., and Taylort, J.R., “Navigation of car-like mobile robot using a decomposition of the environment in convex cell,” in Proc. IEEE ICRA, Sacramento, California, (1991).
[4] Latombe, J.C., “Robot motion planning”, Kluwer Academic Publishers, (1991).
[5] Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., and Thrun, S., “Principle of Robot Motion: Theory, Algorithms, and Application”. MIT Press, Cambridge, (2005).
[6] Dubins, L.E., “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents,” American Journal of Math. Vol. 79, pp. 497–516, (1957).
[7] Reeds, J.A., and Shepp, L.A., “Optimal paths for a car that goes both forwards and backwards,” Pacific Journal of Mathematics, vol. 145, no 2. pp 367–393, (1990).
[8] Barraquand, J., and Latombe, J.C., “Nonholonomic Multibody Mobile Robots: Controllability and Motion Planning in the Presence of Obstacles,” Algorithmica, Vol. 10, No. 2, p. 121–155, (1993).
[9] Kuffner, J.J., and LaValle, S.M., “RRT-connect: An efficient approach to single-query path planning,” in Proc. of IEEE International Conf. on Robotics and Automation, Vol. 2, pp. 995–1001, (2002).
[10] Laumond, J.P., Jacobs, P.E., Taix, M., and Murray, R.M., “A motion planner for nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation, Vol. 10, No. 5, (1994).
[11] Sánchez, A.L., Zapata, R., and Arenas, A.B., “Motion planning for car-like robots using lazy probabilistic roadmap method,” in Proc. MICAI 2002, pp. 1–10, (2002).
[12] Guang, S., and Nancy, A.M., “Randomized motion planning for car-like robots with C-PRM,” in Proc. IEEE Int. Conf. on Robotics and Automation, Vol. 1. pp. 37–42, (2002).
[13] LaValle, S.M., “Planning algorithms”, Cambridge University Press, (2006).
[14] Svestka, P., and Vleugels, J., “Exact motion planning for tractor-trailer robots,” in Proc. of IEEE International Conference on Robotics and Automation, vol. 3, pp. 2445–2450, (1995).
[15] Sekhavat, S., Svestka, P., Laumond, J. P., and Overmars, M.H., “Multilevel path planning for nonholonomic robots using semiholonomic subsystems,” The International Journal of Robotics Research, Vol. 17, No. 8, p. 840–857, (1998).
[16] Yuan, J., Huang, Y., Sun, F., and Kang, Y., “Computation of equivalent size for tractor-trailer wheeled mobile robot,” 5th World Congress on Intelligent Control and Automation, pp. 4788–4792, Hangzhou, China, (2004).
[17] Liu, Z.J., Huang, P., Huang, J.L., and Que, J.L., “Path planning for tractor-trailer mobile robot based on heuristic genetic algorithm,” in Proceedings of International Conference on Machine Learning and Cybernetics, Vol. 2, pp. 1119–1124, (2004).
[18] Sun, F., Huang, Y., Yuan, J., Kang, Y., and Ma, F., “A Compound PRM Method for Path Planning of the Tractor-Trailer Mobile Robot,” in Proceedings of IEEE International Conference on Automation and Logistics, pp. 1880–1885, (2007).
[19] http://math.berkeley.edu/~sethian/2006/Applications/Robotics/robotics.html.
[20] Farag, A.A., and Hassouna, M.S. “Theoretical foundations of tracking monotonically advancing fronts using fast marching level set method,” Technical Report, Computer Vision and Image Processing Lab., ECE Dept., University of Louisville, (2005).
[21] Sethian, J.A., “A fast marching level set method for monotonically advancing fronts,” in Proc. National Academy of Science, USA, Vol. 93, No. 4, pp. 1591–1595, (1996).
[22] Li, Y., “Real-time motion planning of multiple agents and formations in virtual environments,” PhD Thesis, Simon Fraser University, (2008).
[23] Chiang, C.H., Chiang, P.J., Fei, J.C.C., and Liu, J.S., “A comparative study of implementing fast marching method and A* search for mobile robot path planning in grid environment: effect of map resolution,” National Science Council under contract NSC 96-2221-E-001-018-MY2, (2007).
[24] Garrido, S., Moreno, L., Blanco, D., and Martin, F., “Exploratory navigation based on Voronoi transform and fast marching,” in IEEE International Symposium on Intelligent Signal Processing, pp. 1–6, (2007).
[25] Chiang, C.H., and Liu, J.S., “Boundary following in unknown polygonal environment based on fast marching method,” National Science Council, (2008).
[26] Cohen, L.D., and Kimmel, R., “Global minimum for active contour models: a minimal path approach,” Int. Journal of Computer Vision, Vol. 24, No. 1, pp. 57–78, (1997).
[27] Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., and Lane, D., “Path planning for autonomous underwater vehicles,” IEEE Transaction on Robotics, Vol. 23, No. 2, pp. 331–341, (2007).
[28] Gonzalez, R.C. and Woods, R.E., “Digital Image Processing”, Addison-Wesley, ISBN 0-201-60078-1, pp. 231–235 (1993).
[29] جنّت، داود، برنامهریزی حرکت بهنگام روباتهای ماشینواره منفرد و چندتایی با استفاده از روش پیشروی سریع (FMM)، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس، اردیبهشت 89.
[30] P. Cheng, Z. Shen, and S.M. LaValle, “RRT-based trajectory design for autonomous automobiles and spacecraft,” Archives of Control Science, vol. 11, 2001, pp. 167–194.