تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی

نویسندگان

1 استادیار، دانشکده فنی مهندسی، گروه عمران، دانشگاه شهرکرد، شهرکرد، ایران

2 دانشجوی دکتری، دانشکده عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، لویزان، ایران

3 دانشجوی کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

هدف از این مقاله، تعیین فرکانس زاویه‌ای طبیعی ورق‏ها با توجه به شرایط مختلف تکیه‌گاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روش‏های آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکه‌های چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزن‏های شبکه برای رسیدن به حداقل خطا، تعدیل می‌شود. در این تحقیق ابتدا فرکانس واقعی ورق‏ها با استفاده از برنامهANSYS محاسبه شده و به عنوان تابع هدف شبکه عصبی در نظر گرفته می‌شود. سپس با استفاده از مقادیر بدست آمده در مرحله قبل، دسته‌ای از ورودی‌ها که شامل ابعاد و خصوصیات جنس ورق‏هاست ایجاد شده و یک شبکه عصبی ساخته شده و آموزش داده می‌شود. پس از آموزش شبکه از داده‌های دیگری برای آزمایش شبکه استفاده می‌شود. نتایج تحلیل به خوبی بیانگر عملکرد شبکه عصبی بوده به طوری که زمان محاسبه فرکانس به میزان قابل توجهی کاهش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

APPROXIMATE EIGENVALUE OF PLATE BY ARTIFICIAL NEURAL NETWORKS

نویسندگان [English]

  • Ali Heidari 1
  • Davoud Tavakoli 2
  • Pouyan Fakharian 3
1 Department of Civil Engineering, University of Shahrekord, Shahrekord, Iran
2 Ph.D. Student, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Lavizan, Iran
3 M.Sc. Student, Faculty of Civil Engineering, Semnan University, Semnan, Iran
چکیده [English]

The general goal of this paper is to determine natural frequency of a plate by artificial neural network with various supporting conditions. One of the most famous training of neural network is back propagation algorithm. This algorithm is a systematic method for training multi-layer artificial neural network. Back propagation algorithm is based on gradient descant which means that it moves downward on the error declination and regulates the weights for the minimum error. In this research, the real frequency is calculated using ANSYS program and is defined as a goal function for neural network so that all outputs of the network can be compared to this function and the error can be calculated. Then using a set of inputs including dimensions or specifications of plate, a neural network is made. After the determination of algorithm and quantities of the network, the phases of training and testing of the results are carried out and the output of the network is created. It is concluded that the results show the performance of the neural network and that the time of frequency calculation is considerably reduced.

کلیدواژه‌ها [English]

  • Eigen problem
  • Eigen value
  • Artificial Neural Network
  • Back Propagation
 
[1] Taylor, JG., Mannion, CLT. (1992). “Theory and Application of Neural Networks”, Springer-Verlag, New York,.
[2] Freeman, JA. (1994) “Simulating Neural Networks”, Addison-Wesley Publishing Company, Inc., New York.
[3] Fausett, L. (1994). “Fundamentals of Neural Networks”, Prentice Hall Company, New York.
[4] Salajegheh, E., Heidari, A. (2004). “Approximate dynamic analysis of structures against earthquake by discrete wavelet neural network”, The Third International Conference on advances in Structural Engineering and Mechanics (ICSCS’04), 2-4 September, Ed. Chang-Koon Choi, Seoul, Korea, pp. 775-788, (Paper on CD).
[5] Heidari, A., Salajegheh, E. (2006). “Time history analysis of structures for earthquake loading by wavelet networks”, Asian Journal of Structural Engineering, Vol. 7, No. 2, pp. 155-168.
[6] Heidari, A., Salajegheh, E. (2007). “Approximate Dynamic Analysis of Structures for Earthquake Loading using FWT”, International Journal of Engineering (IJE), I.R.I., Vol. 20, No. 2, pp. 1-11.
[7] Gholizadeh, S., Sheidaii, M.R., Farajzadeh, M.R. (2012). “Seismic design of double layer grids by neural networks”, International Journal of Optimization in Civil Engineering, Vol. 2, pp. 29-45.
[8] Heidari, A. (2011). “Calculation of Frequency of Retaining Wall by Back Propagation Neural Network”, Asian Journal of Civil Engineering, Vol. 12, No. 3, pp. 267-278.
[9] Lagaros, N. D., Papadrakakis, M. (2012). “Neural network based prediction schemes of the non-linear seismic response of 3D buildings”, Advances in Engineering Software, Vol. 44, No. 1, pp. 92-115.
[10] Naderpour, H., Kheyroddin, A., GhodratiAmiri, G. (2010). Prediction of FRP-Confined Compressive Strength of Concrete Using Artificial Neural Networks, Composite Structures (Elsevier), Vol. 92, pp. 2817–2829.
]۱۱[ حسن‌آبادی، م.، حداد، ع.، نادرپور، ح. (۱۳۹۰)، استفاده از شبکه‌های عصبی مصنوعی در تخمین ظرفیت باربری شالوده‌های سطحی واقع بر بستر‌های چند لایه چسبنده، مجله مدل‌سازی در مهندسی، دانشگاه سمنان، سال ۹، شماره ۲۴.
]۱۲[ مرتضایی، ع.، خیرالدین، ع. (۱۳۹۱)، مدل‌سازی و تخمین طول مفصل پلاستیک ستون‌های بتن‌آرمه به کمک شبکه‌های عصبی مصنوعی، مجله مدل‌سازی در مهندسی، دانشگاه سمنان، سال ۱۰، شماره ۲۹.
[13] Hagan, M.T., Demuth, H. B., Beale, M.H. (1996). Neural Network Design, Boston, MA: PWS Publishing,.
[14] Kohonen, T. (1997).  Self-Organizing Maps, Second Edition, Berlin: Springer-Verlag.
[15] Medsker, L.R., Jain, L.C. (2000). Recurrent neural networks: design and applications, Boca Raton, FL: CRC Press.
]۱۶[ معاونی، س. راهنمای سریع ویژوالANSYS، تهران، انتشارات ناقوس، 1381.
[17] Demuth, H., Beale, M. (2006). “Neural Network Toolbox Users Guide: for Use with MATLAB”, The Math. Works.
[18] Wasserman, PD. (1989) “Neural Computing: Theory and Practice”, Van Nostrand Reinhold, New York.