بررسی اثر گرانش بر جابجایی توام یک میکروجریان با استفاده از روش شبکه بولتزمن

نویسندگان

1 دانشگاه آزاد اسلامی واحد نجف‌آباد

2 دانشگاه آزاد اسلامی واحد خمینی شهر

چکیده

هدف این مقاله مطالعه اثرات گرانش بر انتقال حرارت جابجایی توام در یک میکروکانال با استفاده از روش شبکه بولتزمن است. به این منظور، معادلات شرایط‌مرزی هیدرودینامیکی نیز باید اصلاح شوند. سیال سرد وارد میکروکانال شده و بعد از خنک سازی دیوارهای گرم، از آن خارج می گردد. محاسبات برای محدوده گسترده ای از عدد نادسن (Kn) انجام می شود. نتایج در قالب خطوط جریان و همدما، تغییرات طولی ضریب اصطکاک، عدد ناسلت، سرعت لغزشی، پرش دمایی و پروفیل های دما و سرعت در مقاطع مختلف ارائه می گردند. مشاهده شد که روش شبکه بولتزمن را می توان برای شبیه سازی جابجایی توام در یک میکروکانال با دقت خوبی بکار برد و همچنین می توان ادعا نمود که اثرات نیروهای شناوری برروی خواص حرکتی به ازای Kn0.05، این اثرات را می توان نادیده گرفت. علاوه براین، دیده شد که نیروهای شناوری یک سلول چرخشی در جریان داخل میکروکانال ایجاد می کنند که منجر به تولید سرعت لغزش منفی در Kn0.005 می شود.

کلیدواژه‌ها


عنوان مقاله [English]

THE INFLUENCE OF GRAVITY ON A MICROFLUIDIC MIXED CONVECTION BY APPLYING LATTICE BOLTZMANN METHOD

نویسندگان [English]

  • arash Karimipour 1
  • mohammad Akbari 1
  • davood Toghraie 2
1 university
2 university
چکیده [English]

In this article the effects of gravity on the mixed convection of a microflow is studied numerically by using lattice Boltzmann method (LBM). To do this, the hydrodynamic boundary condition equations should also be modified. The cold fluid enters to the microchannel and leaves it after cooling its hot walls. Calculations are provided for a wide range of Knudsen number (Kn). The results are presented as the isotherms and streamlines, the values of slip velocity and temperature jump and the local and global profiles of velocity, temperature and Nusselt number. It is observed that LBM is able to simulate the mixed convection in a microchannel appropriately. It is claimed that the effects of buoyancy forces are important for Kn0.05 they can be ignored. Moreover, the buoyancy forces make a rotational cell in the microchannel flow which generates the negative slip velocity at Kn=0.005.

کلیدواژه‌ها [English]

  • Knudsen number
  • LBM
  • Microchannel
[1] Nguyen, N.T. and Wereley, S.T. (2006). "Fundamentals and applications of microfluidics". Second edition, Artech house INC, Norwood.
[2] Gad-el-Hak, M. (2001). "Flow physics in MEMS". Rev. Mec. Ind., Vol. 2, pp. 313-341.
[3] Adams, T.M. et al. (1998). "An experimental investigation of single-phase forced convection in microchannels". Int. J. Heat Mass Transfer, Vol. 41, pp. 851-857.
[4] Xuan, Y. et al. (2007). "Investigations of convective heat transfer in ferrofluid microflows using lattice-Boltzmann approach". Int. J. Thermal Sciences, Vol. 46, pp. 105-111.
[5] Nie, X. et al. (2002). "Lattice-Boltzmann simulation of fluid flows in MEMS". J. Statistical Physics, Vol. 107, pp. 279-289.
[6] Ho, C. and Tai, Y. (1998). "Micro-electro-mechanical-systems (MEMS) and fluid flows". Annu. Rev. Fluid Mech., Vol. 30, pp. 579-612.
[7] Bird, G. (1994). "Molecular gas dynamics and the direct simulation of gas flows". Oxford University Press.
[8] Oran, E.S. et al. (1998). "Direct Simulation Mont Carlo: Recent Advances and Applications". Ann. Rev. Fluid Mech., Vol. 30, pp. 403-441.
[9] Kandlikar, S. et al. (2006). "Heat transfer and fluid flow in minichannels and microchannels".
[10] Chen, S. and Doolen, G.D. (1998). "Lattice Boltzmann method for fluid flows". Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364.
[11] Chang, C. et al. (2009). "Numerical investigation into thermal mixing efficiency in Y-shaped channel using Lattice Boltzmann method and field synergy principle". Int. J. of Thermal Sciences, Vol. 48, pp. 2092-2099.
[12] Wang, M. et al. (2007). "Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials". Int. J. of Thermal Sciences, Vol. 46, pp. 848-855.
[13] Kavehpour, H.P. et al. (1997). "Effects of compressibility and rarefaction on gaseous flows in microchannels". Numerical Heat Transfer, Vol. 32(A), pp. 677-696.
[14] Zahid, W.A. et al. (2007). "Couette-Poiseuille flow of a gas in long microchannels". Microfluid Nanofluid, Vol. 3, pp. 55-64.
[15] Succi, S. (2001). "The lattice Boltzmann equation for fluid dynamics and beyond". Oxford University Press.
[16] Han, K. et al. (2008). "Modelling of thermal contact resistance within the framework of the thermal lattice Boltzmann method". Int. J. of Thermal Sciences, Vol. 47, pp. 1276-1283.
[17] Chen, S. and Tian, Z. (2010). "Entropy generation analysis of thermal micro-Couette flows in slip regime". Int. J. of Thermal Sciences, Vol. 49, pp. 2211-2221.
[18] Al-Zoubi, A. and Brenner, G. (2008). "Simulating fluid flow over sinusoidal surfaces using the lattice Boltzmann method". Computers and Mathematics with Applications, Vol. 55, pp. 1365-1376.
[19] Bhatnagar, P.L. et al. (1954). "A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system". Phys. Rev., Vol. 94, pp. 511-522.
[20] He, X. et al. (1998). "A novel thermal model for the lattice Boltzmann method in incompressible limit". J. of Computational Physics, Vol. 146, pp. 282-300.
[21] Guo, Z. et al. (2000). "Lattice BGK model for incompressible Navier–Stokes equation". J. of Computational Physics, Vol. 165, pp. 288-306.
[22] D’Orazio, A. et al. (2004). "Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition". Int. J. of Thermal Sciences, Vol. 43, pp. 575-586.
[23] D’Orazio, A. and Succi, S. (2004). "Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions". Future Generation Computer Systems, Vol. 20, pp. 935-944.
[24] D’Orazio, A. et al. (2003). "Lattice Boltzmann simulation of open flows with heat transfer". phys. fluids, Vol. 15, pp. 2778-2781.
[25] Zhou, Y. et al. (2006). "Simulation of micro- and nano-scale flows via the lattice Boltzmann method". Physica, Vol. 362, pp. 68-77.
[26] Chen, S. (2010). "Lattice Boltzmann method for slip flow heat transfer in circular microtubes: Extended Graetz problem". Applied Mathematics and Computation, Vol. 217, pp. 3314-3320.
[27] Lim, C.Y. et al. (2002). "Application of lattice Boltzmann method to simulate microchannel flows". Physics of Fluids, Vol. 14, pp. 2299-2308.
[28] Niu, X.D. et al. (2007). "A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows". Computers & Fluids, Vol. 36, pp. 273-281.
[29] Niu, X.D. et al. (2004). "A lattice Boltzmann BGK model for simulation of micro flows". Europhys. Lett., Vol. 67(4), pp. 600-606.
[30] Shu, C. et al. (2005). "A Lattice Boltzmann Kinetic Model for Microflow and Heat Transfer". J. of Statistical Physics, Vol. 121, pp. 239-255.
[31] Sofonea, V. and Sekerka, R.F. (2005). "Boundary conditions for the upwind finite difference Lattice Boltzmann model: Evidence of slip velocity in micro-channel flow". J. of Computational Physics, Vol. 207, pp. 639-659.
[32] Zhang, Y.H. et al. (2005). "Gas Flow in Microchannels - A Lattice Boltzmann Method Approach". J. of Statistical Physics, Vol. 121 pp. 257-267.
[33] Hung, W.C. and Ru, Y. (2006). "A numerical study for slip flow heat transfer". Applied Mathematics and Computation, Vol. 173, pp. 1246-1264.
[34] Tian, Z.W. et al. (2007). "Lattice Boltzmann scheme for simulating thermal micro-flow". Physica, Vol. 385, pp. 59-68.
[35] Szalmas, L. (2007). "Multiple-relaxation time lattice Boltzmann method for the finite Knudsen number region". Physica, Vol. 379, pp. 401-408.
[36] Kim, S.H. et al. (2008). "Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers". J. of Computational Physics, Vol. 227, pp. 8655-8671.
[37] Verhaeghe, F. et al. (2009). "Lattice Boltzmann modeling of microchannel flow in slip flow regime". J. of Computational Physics, Vol. 228, pp. 147-157.
[38] Babovsky, H. (2009). "A numerical model for the Boltzmann equation with applications to micro flows". Computers and Mathematics with Applications, Vol. 58, pp. 791-804.
[39] Chen, S. and Tian, Z. (2009). "Simulation of microchannel flow using the lattice Boltzmann method". Physica, Vol. 388, pp. 4803-4810.
[40] Chen, S. and Tian, Z. (2010). "Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model". International Journal of Heat and Fluid Flow, Vol. 31, pp. 227-235.
[41] Tian, Z. et al. (2010). "Lattice Boltzmann simulation of gaseous finite-Kundsen microflows". International Journal of Modern Physics, Vol. 21(C), pp. 769-783.
[42] Qian, Y.H. et al. (1992). "Lattice BGK models for Navier-Stokes equation". Europhys. Lett., Vol.   17, pp. 479-484.
[43] Zou, Q. and He, X. (1997). "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model". Phys. Fluids, Vol. 9, pp. 1591-1599.
[44] Alamyane, A.A. and Mohamad, A.A.  (2010). "Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method". Computers and Mathematics with Applications, Vol. 59, pp. 2421-2430.
[45] Karniadakis, G. and Beskok, A. (2002). "Micro flows: fundamentals and simulation". Springer, New York.
[46] Succi, S. (2002). "Mesoscopic modelling of slip motion at fluid-solid interfaces with heterogeneous catalysis". Phys. Rev. Lett., Vol.  89(064502).
[47] Davis, G.V. (1983). "Natural convection of air in a square cavity: a benchmark numerical solution". Int. J. Numerical Methods Fluids, Vol. 3, pp. 249-264.
[48] Habchi, S. and Acharya, S. (1986). "Laminar mixed convection in a partially blocked, vertical channel". Int. J. Heat Mass Transfer, Vol. 29, pp. 1711-1722.