[1] Nguyen, N.T. and Wereley, S.T. (2006). "Fundamentals and applications of microfluidics". Second edition, Artech house INC, Norwood.
[2] Gad-el-Hak, M. (2001). "Flow physics in MEMS". Rev. Mec. Ind., Vol. 2, pp. 313-341.
[3] Adams, T.M. et al. (1998). "An experimental investigation of single-phase forced convection in microchannels". Int. J. Heat Mass Transfer, Vol. 41, pp. 851-857.
[4] Xuan, Y. et al. (2007). "Investigations of convective heat transfer in ferrofluid microflows using lattice-Boltzmann approach". Int. J. Thermal Sciences, Vol. 46, pp. 105-111.
[5] Nie, X. et al. (2002). "Lattice-Boltzmann simulation of fluid flows in MEMS". J. Statistical Physics, Vol. 107, pp. 279-289.
[6] Ho, C. and Tai, Y. (1998). "Micro-electro-mechanical-systems (MEMS) and fluid flows". Annu. Rev. Fluid Mech., Vol. 30, pp. 579-612.
[7] Bird, G. (1994). "Molecular gas dynamics and the direct simulation of gas flows". Oxford University Press.
[8] Oran, E.S. et al. (1998). "Direct Simulation Mont Carlo: Recent Advances and Applications". Ann. Rev. Fluid Mech., Vol. 30, pp. 403-441.
[9] Kandlikar, S. et al. (2006). "Heat transfer and fluid flow in minichannels and microchannels".
[10] Chen, S. and Doolen, G.D. (1998). "Lattice Boltzmann method for fluid flows". Annu. Rev. Fluid Mech., Vol. 30, pp. 329-364.
[11] Chang, C. et al. (2009). "Numerical investigation into thermal mixing efficiency in Y-shaped channel using Lattice Boltzmann method and field synergy principle". Int. J. of Thermal Sciences, Vol. 48, pp. 2092-2099.
[12] Wang, M. et al. (2007). "Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials". Int. J. of Thermal Sciences, Vol. 46, pp. 848-855.
[13] Kavehpour, H.P. et al. (1997). "Effects of compressibility and rarefaction on gaseous flows in microchannels". Numerical Heat Transfer, Vol. 32(A), pp. 677-696.
[14] Zahid, W.A. et al. (2007). "Couette-Poiseuille flow of a gas in long microchannels". Microfluid Nanofluid, Vol. 3, pp. 55-64.
[15] Succi, S. (2001). "The lattice Boltzmann equation for fluid dynamics and beyond". Oxford University Press.
[16] Han, K. et al. (2008). "Modelling of thermal contact resistance within the framework of the thermal lattice Boltzmann method". Int. J. of Thermal Sciences, Vol. 47, pp. 1276-1283.
[17] Chen, S. and Tian, Z. (2010). "Entropy generation analysis of thermal micro-Couette flows in slip regime". Int. J. of Thermal Sciences, Vol. 49, pp. 2211-2221.
[18] Al-Zoubi, A. and Brenner, G. (2008). "Simulating fluid flow over sinusoidal surfaces using the lattice Boltzmann method". Computers and Mathematics with Applications, Vol. 55, pp. 1365-1376.
[19] Bhatnagar, P.L. et al. (1954). "A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system". Phys. Rev., Vol. 94, pp. 511-522.
[20] He, X. et al. (1998). "A novel thermal model for the lattice Boltzmann method in incompressible limit". J. of Computational Physics, Vol. 146, pp. 282-300.
[21] Guo, Z. et al. (2000). "Lattice BGK model for incompressible Navier–Stokes equation". J. of Computational Physics, Vol. 165, pp. 288-306.
[22] D’Orazio, A. et al. (2004). "Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition". Int. J. of Thermal Sciences, Vol. 43, pp. 575-586.
[23] D’Orazio, A. and Succi, S. (2004). "Simulating two-dimensional thermal channel flows by means of a lattice Boltzmann method with new boundary conditions". Future Generation Computer Systems, Vol. 20, pp. 935-944.
[24] D’Orazio, A. et al. (2003). "Lattice Boltzmann simulation of open flows with heat transfer". phys. fluids, Vol. 15, pp. 2778-2781.
[25] Zhou, Y. et al. (2006). "Simulation of micro- and nano-scale flows via the lattice Boltzmann method". Physica, Vol. 362, pp. 68-77.
[26] Chen, S. (2010). "Lattice Boltzmann method for slip flow heat transfer in circular microtubes: Extended Graetz problem". Applied Mathematics and Computation, Vol. 217, pp. 3314-3320.
[27] Lim, C.Y. et al. (2002). "Application of lattice Boltzmann method to simulate microchannel flows". Physics of Fluids, Vol. 14, pp. 2299-2308.
[28] Niu, X.D. et al. (2007). "A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows". Computers & Fluids, Vol. 36, pp. 273-281.
[29] Niu, X.D. et al. (2004). "A lattice Boltzmann BGK model for simulation of micro flows". Europhys. Lett., Vol. 67(4), pp. 600-606.
[30] Shu, C. et al. (2005). "A Lattice Boltzmann Kinetic Model for Microflow and Heat Transfer". J. of Statistical Physics, Vol. 121, pp. 239-255.
[31] Sofonea, V. and Sekerka, R.F. (2005). "Boundary conditions for the upwind finite difference Lattice Boltzmann model: Evidence of slip velocity in micro-channel flow". J. of Computational Physics, Vol. 207, pp. 639-659.
[32] Zhang, Y.H. et al. (2005). "Gas Flow in Microchannels - A Lattice Boltzmann Method Approach". J. of Statistical Physics, Vol. 121 pp. 257-267.
[33] Hung, W.C. and Ru, Y. (2006). "A numerical study for slip flow heat transfer". Applied Mathematics and Computation, Vol. 173, pp. 1246-1264.
[34] Tian, Z.W. et al. (2007). "Lattice Boltzmann scheme for simulating thermal micro-flow". Physica, Vol. 385, pp. 59-68.
[35] Szalmas, L. (2007). "Multiple-relaxation time lattice Boltzmann method for the finite Knudsen number region". Physica, Vol. 379, pp. 401-408.
[36] Kim, S.H. et al. (2008). "Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers". J. of Computational Physics, Vol. 227, pp. 8655-8671.
[37] Verhaeghe, F. et al. (2009). "Lattice Boltzmann modeling of microchannel flow in slip flow regime". J. of Computational Physics, Vol. 228, pp. 147-157.
[38] Babovsky, H. (2009). "A numerical model for the Boltzmann equation with applications to micro flows". Computers and Mathematics with Applications, Vol. 58, pp. 791-804.
[39] Chen, S. and Tian, Z. (2009). "Simulation of microchannel flow using the lattice Boltzmann method". Physica, Vol. 388, pp. 4803-4810.
[40] Chen, S. and Tian, Z. (2010). "Simulation of thermal micro-flow using lattice Boltzmann method with Langmuir slip model". International Journal of Heat and Fluid Flow, Vol. 31, pp. 227-235.
[41] Tian, Z. et al. (2010). "Lattice Boltzmann simulation of gaseous finite-Kundsen microflows". International Journal of Modern Physics, Vol. 21(C), pp. 769-783.
[42] Qian, Y.H. et al. (1992). "Lattice BGK models for Navier-Stokes equation". Europhys. Lett., Vol. 17, pp. 479-484.
[43] Zou, Q. and He, X. (1997). "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model".
Phys. Fluids, Vol. 9, pp. 1591-1599.
[44] Alamyane, A.A. and Mohamad, A.A. (2010). "Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method". Computers and Mathematics with Applications, Vol. 59, pp. 2421-2430.
[45] Karniadakis, G. and Beskok, A. (2002). "Micro flows: fundamentals and simulation". Springer, New York.
[46] Succi, S. (2002). "Mesoscopic modelling of slip motion at fluid-solid interfaces with heterogeneous catalysis". Phys. Rev. Lett., Vol. 89(064502).
[47] Davis, G.V. (1983). "Natural convection of air in a square cavity: a benchmark numerical solution". Int. J. Numerical Methods Fluids, Vol. 3, pp. 249-264.
[48] Habchi, S. and Acharya, S. (1986). "Laminar mixed convection in a partially blocked, vertical channel". Int. J. Heat Mass Transfer, Vol. 29, pp. 1711-1722.