بررسی انتقال حرارت در فوم‌های فلزی در حضور جابجایی اجباری و تشعشع حرارتی به روش اغتشاش هموتوپی

نویسندگان

1 دانشگاه سمنان

2 دانشگاه صنعتی بابل

چکیده

جریان اجباری در محیط متخلخل فلزی اشباع از سیال در حضور تشعشع حرارتی به کمک روش اغتشاش هموتوپی بررسی می‌شود. مدل دارسی-برینکمن برای جریان سیال در محیط متخلخل برای دیدن تاثیرات دیواره استفاده می‌شود. شار حرارتی ثابتی به دیواره کانال وارد و انتقال حرارت تشعشعی به کمک هدایت حرارتی متغیر با دما مدلسازی می‌شود. در مطالعه حاضر برای اولین بار مساله انتقال حرارت غیر خطی همبسته جابجایی-تشعشع به کمک یک روش نیمه تحلیلی حل می‌شود. تاثیرات پارامترهای تشعشعی λ) و Tr) و پارامتر شکل محیط متخلخل (s) روی عدد ناسلت و پروفیل دمای بدون بعد بررسی و نشان داده می‌شود که محیط متخلخل و تشعشع حرارتی باعث افزایش میزان انتقال حرارت خواهد شد. همچنین بر دقت روش اغتشاش هموتوپی و محدودیت‌های آن نیز بحث خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the forced convection heat transfer in the presence of radiation in metal foams using HPM

نویسندگان [English]

  • Maziar Dehghan 1
  • Yousef Rahmani 2
  • Seyfolah Saedodin 1
  • Mohammad Sadegh Valipour 1
  • Davood Domiri Ganji 2
1
2
چکیده [English]

Forced convection heat transfer in metal foams in the presence of radiation heat transfer is studied using the homotopy perturbation method (HPM). To see wall effects, Darcy-Brinkman model for the flow in porous media is used. A constant heat flux is imposed at the wall and the radiation heat transfer is modeled by a temperature-dependent conductivity. In the present study the case of conjugate convection and radiation heat transfer is analyzed by a semi-analytical approach for the first time. Effects of the radiation parameters (λ, Tr) and porous medium shape parameter (s) on the Nusselt number and dimensionless temperature profile are investigated. Moreover, a discussion on the accuracy and limitations of the HPM method will be presented.

کلیدواژه‌ها [English]

  • porous media
  • Homotopy perturbation method
  • non-Darcian model
  • radiation
  • metal foams
1-      
[1]          Vafai, K., Kim, S.J. (1989). “Forced convection in a channel filled with a porous medium: An exact solution”. J. Heat Transfer 111, pp. 1103-1106.
[2]          Nakayama, A., Shenoy, A.V. (1993). “Non-Darcy Forced Convective Heat Transfer in a Channel Embedded in a Non-Newtonian Inelastic Fluid-Saturated Porous Medium”. Can. J. Chem. Eng. 71, pp. 168–173.
[3]          Alazmi, B., Vafai, K. (2001). “Analysis of Fluid Flow and Heat Transfer Interfacial Conditions Between a Porous Medium and a Fluid Layer”. Int. J. Heat Mass Transfer 44, pp. 1735–1749.
[4]          Nield, D.A., Kuznetsov, A.V. (2010). “Forced convection in cellular porous materials: Effect of temperature-dependent conductivity arising from radiative transfer”. Int. J. Heat Mass Transfer 53, pp. 2680–2684.
[5]          Dehghan, M., Valipour, M.S., Saedodin, S. (2014). “Perturbation analysis of the local thermal non-equilibrium condition in a fluid saturated porous medium bounded by an iso-thermal channel”. Transport in Porous Media 102 (2), pp. 139-152.
[6]           Dehghan, M., Jamal-Abad, M.T., Rashidi, S. (2014). “Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers”. Energy Conversion Management 85, pp. 264-271.
[7]          Ganji, D.D., Sadighi, A. (2007). “Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations”. Journal of Computational and Applied Mathematics 207, pp. 24.
[8]          He, J.H. (1999). “Homotopy perturbation technique”. Computer Methods in Applied Mechanics and Engineering 178, pp. 257–262.
[9]          Bararnia, H., Ghasemi, E., Soleimanikutanaei, S., Barari, A., Ganji, D.D (2011). “HPM-PADE Method on Natural Convection of Darcian Fluid About a vertical Full Cone Embedded in Porous Media”. Journal of Porous Media 14, pp. 545-553.
[10]       Hatami, M., Ganji, D.D. (2013). “Thermal performance of circular convective–radiative porous fins with different section shapes and materials”. Energy Conversion and Management 76, pp. 185–93.
[11]       Jalilpour, B., Jafarmadar, S., Ganji, D.D, Shotorban, A.B, Taghavifar, H. (2014). “Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux”. Journal of Porous Media 195, pp. 194-204.
[12]       Hatami, M., Ganji, D.D. (2014). “Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu–water nanofluid using porous media approach and least square method”. Energy Conversion and Management 78, pp. 347–358.
[13]       Wu, Z., Caliot, C., Flamant, G., Wang, Z. (2011). “Coupled radiation and flow modeling in ceramic foam volumetric solar air receivers”. Solar Energy 85, pp. 2374–2385.
[14]       Xu, C., Song, Z., Chen, L., Zhen, Y. (2011). “Numerical investigation on porous media heat transfer in a solar tower receiver”. Renewable Energy 36, pp. 1138-1144.
[15]       Bayraka, F., Oztop, H.F., Hepbasli, A. (2013). “Energy and exergy analyses of porous baffles inserted solar air heaters for building applications”. Energy and Buildings 57, pp. 338–345.
[16]       Kandasamy, R., Muhaimin, I., Rosmila, A.K. (2014). “The performance evaluation of unsteady MHD non-Darcy nanofluid flow over a porous wedge due to renewable (solar) energy”. Renewable Energy 64, pp. 1-9.
[17]       Nield, D.A., Kuznetsov, A.V. (2013). “An historical and topical note on convection in porous media”. J. Heat Transfer 135, doi:10.1115/1.4023567.
[18]       Kuznetsov, A.V., Nield, D.A. (2010). “The Cheng-Minkowycz problem for cellular porous materials: effect of temperature-dependent conductivity arising from radiative transfer”. Int. J. Heat Mass Transfer 53, pp. 2676–2679.
[19]       Nield, D.A., Bejan, A. (2006). “Convection in Porous Media”. 3rd Ed., Springer, NY.
[20]       Zhao, C.Y., Tassou, S.A., Lu, T.J. (2008). “Analytical considerations of thermal radiation in cellular metal foams with open cells”. Int. J. Heat Mass Transfer 51, pp. 929–940.
[21]       Viskanta, R. (2009). “Overview of radiative transfer in cellular porous materials”. Proceedings of ASME 2009 Heat Transfer Summer Conference, San Francisco, CA, July 19–23.
[22]        Dehghan, M., Rahmani, Y., Ganji, D.D., Saedodin, S., Valipour, M.S., Rashidi, S. (2015). “Convection–radiation heat transfer in solar heat exchangers filled with a porous medium: Homotopy perturbation method versus numerical analysis”. Renewable Energy 74, pp. 448-455.
[23]       Ganji, D.D., Languri, E.M. (2010). “Mathematical methods in nonlinear heat transfer: a semi-analytical approach”. Xlibris, IN.
[24]       Mirzaei, M., Dehghan, M. (2013). “Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach”. Heat Mass Transfer 49, pp. 1803-1811.