تحلیل اگزرژی سیستم پمپ حرارتی خورشیدی انبساط مستقیم با در نظر گرفتن اثرات افت فشار مبرد R134a

نوع مقاله: پژوهشی

نویسندگان

دانشگاه رازی

چکیده

در این مقاله تحلیل اگزرژی یک سیستم پمپ حرارتی خورشیدی انبساط مستقیم در شرایط آب و هوایی شهر کرمانشاه به صورت عددی بررسی شده و بر خلاف کارهای دیگر، اثرات افت فشار جریان مبردR134a  در کندانسور، تبخیرکننده/کلکتورخورشیدی و مجموعه​ی لوله​کشی در نظر گرفته شده است. به منظور محاسبه​ی افت فشار مبرد دوفازی درون تبخیرکننده و کندانسور از مدل همگن افت فشار جریان درون لوله​های افقی استفاده شد. سیستم شامل یک کلکتور خورشیدی صفحه تخت با مساحت 4 مترمربع، یک تانک ذخیره​ی آب​گرم به حجم 150 لیتر، یک کمپرسور چرخشی نوع هرمتیک و یک شیرانبساط ترموستاتیکی می​باشد. همچنین تأثیر عوامل مختلفی مانند دمای محیط، تابش خورشیدی، مساحت سطح کلکتور و سرعت کمپرسور، بر بازده اگزرژی و میزان تخریب اگزرژی سیستم، بررسی گردید. نتایج حاصل از شبیه​سازی هم​خوانی خوبی با نتایج آزمایشگاهی داشته و نشان می​دهند که افزایش افت فشار در کلکتور خورشیدی/تبخیرکننده، اثر نامطلوبی بر ضریب عملکردگرمایی سیستم و بازده کلکتور خورشیدی دارد. همچنین در طول کارکرد یک ساله سیستم مشخص شد که بیشترین میزان بازده اگزرژی سیستم 7/22 درصد و کمترین تخریب اگزرژی سیستم 48/1 کیلووات، مربوط به ماه دسامبر با کم​ترین میزان تابش خورشیدی می​باشد. نتایج نشان می​دهند که از میان تمامی اجزای سیستم، کلکتور خورشیدی کمترین میزان بازده اگزرژی با مقدار 6/12 درصد و بیشترین مقدار تخریب اگزرژی با مقدار 19/2 کیلووات را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Exergy analysis of a direct-expansion solar-assisted heat pump system considering the effects of pressure drop of the R134a refrigerant flow

نویسندگان [English]

  • Sobhan Fathollahi
  • Habibollah Safarzadeh
چکیده [English]

In this paper, the exergy analysis of a direct-expansion solar-assisted heat pump system (DX-SAHP) has been presented considering the effects of the pressure drop associated with the ï‌‚ow of R134a refrigerant through the condenser, collector/ evaporator and connection pipes. In order to calculate the two phase refrigerant pressure drop through the evaporator and condenser, the homogeneous model of pressure drop inside horizontal pipes has been used. The DX-SAHP system mainly employs a bare ï‌‚at-plate solar collector with a surface area of 4 m2, a hot water tank with the volume of 150L, a rotary-type hermetic compressor and a thermostatic expansion valve. Furthermore, the effect of various parameters including ambient temperature, solar radiation, collector area and compressor speed have been analyzed on the exergy efficiency and exergy loss of the system. The results of the simulation have good agreement with the experimental results and show that the increase in solar collector/evaporator pressure drop adversely affects the system COP and the solar collector efficiency. During the operation of the DX-SAHP system within a year, it is concluded that the largest value of the exergy efficiency of the system is 22.7 percent and the lowest value of the exergy loss is 12.6 kW. The obtained values are particularly due to the minimum amount of solar radiation in December. Results indicate that the solar collector has the minimum value exergy efficiency amounted to 12.6 percent and the maximum value of exergy loss amounted to 2.19 kW, among all of the system components.

کلیدواژه‌ها [English]

  • Exergy analysis
  • Solar assisted heat pump
  • Evaporator
  • Pressure drop
  • Exergy loss
[1] P. Sporn, and E. R. Ambrose, "The heat pump and solar energy", Proceedings of the world symposium on applied solar energy, Phoenix, Arizona, November 1955, pp. 1-5.
[2] J. L. Morrison, "Simulation of packaged solar heat-pump water heaters", Solar Energy, Vol. 53, NO. 3, September 1994, pp. 249-257.
[3] B. J. Huang, and J. P. Chyng, "Performance characteristics of integral type solar-assisted heat pump", Solar Energy, Vol. 71, NO. 6, December 2001, pp. 403-414.
[4] G. Xu, X. Zhang, and S. Deng, "Simulation study on the operating performance of a solar–air source heat pump water heater", Applied Thermal Engineering, Vol. 26, NO. 11, August 2006, pp. 363 – 367.
[5] میثاق مرادعلی، فرزاد جعفر کاظمی، " مدلسازی عملکرد یک پمپ حرارتی خورشیدی و مقایسه آن با پمپ حرارتی معمولی "،
چهارمین کنفرانس بینالمللی گرمایش، سرمایش و تهویه مطبوع، تهران، هتل المپیک، ایران، 15 شهریور 1394 ، صفحه 1 - 11 .
[6] حسن آذرکیش، امین بهزادمهر، سیدمسعود حسینی سروری، "بررسی اثر مبردهای مختلف در عملکرد پمپ حرارتی خورشیدی به
منظور گرمایش یک واحد مسکونی"، هجدهمین کنفرانس سالانه مهندسی مکانیک، تهران، ایران، 21 تا 23 اردیبهشت، 1389 .
[7] R. Petela, "Exergy analysis of the solar cylindrical-parabolic cooker", Solar Energy, Vol. 79, NO. 3, September 2005, pp. 221-233.
[8] A. Bejan, "Second Law Analysis in Heat Transfer", Energy, Vol. 5, NO. 8-9, August 1980, pp. 720-732.
[9] E. T, Reyes, E. T. Picon-Nunez, and M. Cervantes, "Title of Paper", IEEE Transactions on Energy Conversion, Vol. 23, NO. 4, April 1998, pp. 337-344.
[10] J. G. Cervantes, and E. Torres-Reyes, "Experiments on a solar-assisted heat pump and an exergy analysis of the system", Applied Thermal Engineering, Vol. 22, NO. 12, August 2002, pp. 1289-1297.
[11] V. Badescu, "First and second law analysis of a solar assisted heat pump based heating system", Energy Conversion Management, Vol. 43, NO. 18, December 2002, pp. 2539-2552.
[12] Y. W. Li, R. Z. Wang, J. Y. Wu, and Y. X. Xu, "Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater", Energy, Vol. 32, NO. 8, August 2007, pp. 1361-1374..
[13] O. Ozgener, and A. Hepbasli, "A review on the energy and exergy analysis of solar assisted heat pump systems", Renewable and Sustainable Energy Reviews, Vol. 11, NO. 3, April 2007, pp. 482-496.
[14] A. Dikici, and A. Akbulut, "Performance characteristics and energy–exergy analysis of solar-assisted heat pump system", Building and Environment, Vol. 43, NO. 11, April 2007, pp. 1961-1972.
[15] سبحان فتحاللهی و حبیبالله صفرزاده ، "شبیهسازی عملکرد حرارتی سیستم پمپ حرارتی خورشیدی انبساط مستقیم جهت گرمایش
آب در شرایط اقلیمی شهر کرمانشاه"، مجله مهندسی مکانیک مدرس، دوره 15 ، شماره 12 ، 1394 ، صفحه 232 - 242 .
[16] J. A. Duffie, and W. A. Beckman, "Solar Engineering of Thermal Processes", 4th Edition. New York: Wiley, 1991, pp. 256-266.
[17] J. H. Wattmuff, W. W. S. Charters, and D. Proctor, "Solar and wind induced external coefficients for solar collectors", Conference of the Mediterranean Cooperation for Solar Energy, Paris, Farance, June 1997.
[18] X. Q. Kong, D. Zhang, Y. Li, and Q.M. Yang, "Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater", Energy, Vol. 36, NO. 12, December 2011, pp. 6830-6838.
[19] J. R. Thome, "Engineering Data Book III, Chapter 13", Lausanne, Switzerland, 2006.
[20] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt, "Fundamentals of Heat and Mass Transfer", Seventh Edition, New York: John Wiley and Sons, 2011, pp. 522-523.
[21] R. DiPippo, "Second law assessment of binary plants generating power from low temperature geothermal fluids", Geothermics, Vol. 33, NO. 5, October 2002, pp. 565-586.
[22] R. Petela, "Exergy of undiluted thermal radiation", Solar Energy, Vol. 74, NO. 6, June 2003, pp. 363 – 367.