طراحی پایدارساز جامع فازی سیستم قدرت با قابلیت حذف تداخل

نوع مقاله: پژوهشی

نویسندگان

1 قزوین - الوند- خیابان آزادی- کوچه 24 پلاک 46

2 دانشگاه سمنان

چکیده

در این مقاله روشی برای کاهش برهمکنش بین پایدارسازهای سیستم قدرت در شبکه های بزرگ چند ماشینه به منظور بهبود پایداری سیگنال کوچک پیشنهاد می شود. بردار بهره های نسبی فرکانسی (DRGA) معیاری برای شناسایی زوجهای ورودی و خروجی با ارتباط قوی به منظور تجزیه یک سیستم چند ورودی- چند خروجی به چند سیستم تک ورودی- تک خروجی در فرکانسهای مختلف می باشد. با استفاده از ماتریس DRGA ، روشی کارآمد و ساده برای کسب اطلاعاتی در مورد نحوه برهمکنش PSSهای سیستمهای چند ماشینه در فرکانسهای مربوط به مدهای الکترومکانیکی سیستم قدرت معرفی می شود. سپس از این اطلاعات برای طراحی یک سیستم پس پردازشگر استفاده شده تا بتواند برهمکنش منفی بین PSS ،ها را با آنالیز و کنترل سیگنالهای خروجی به حداقل برساند. برای افزایش انعطاف پذیری و به منظور کاهش حساسیت نسبت به تغییر نقطه کارسیستم مورد آزمایش قرار گرفته است. Matlab ها و سیستم پس پردازشگر پیشنهادی به صورت فازی طراحی شده اند. روش پیشنهادی بر روی سیستم آزمون دو ناحیه ای در محیطPSS نتایج بدست آمده نشان می دهد که پس پردازشگر فازی توانسته بطور رضایت بخشی با به حداقل رساندن تداخل منفی بین پایدارسازهای سیستم قدرت بطور همزمان هم پایداری سیگنال کوچک را اصلاح کرده و هم حساسیت این پایدارسازها به تغییر نقطه کار را کاهش دهد

کلیدواژه‌ها


عنوان مقاله [English]

A Comperhensive Fuzzy Power System Stabilizer Design with capability of Interaction Elimination

نویسندگان [English]

  • mostfa baqeri pur 1
  • mostafa jazaeri 2
چکیده [English]

In this paper a method for reducing the interactions among power system stabilizers (PSS) in a multi-machine large scale power system and hence improving the small signal stability is proposed. Dynamic Relative Gain Array (DRGA) matrix is used for identifying input-output pairs that are strongly coupled to decompose a MIMO system to several SISO systems. By using the DRGA, an efficient and simple method for collecting information about how PSSs interact among themselves in different frequencies related to electromechnical modes of the power system is introduced. This information is then employed to design a post processor controller that can eliminate the negative interaction among stabilizers by managing the output signals. In order to increase the flexibility and reduce the sensitivity of the stabilizers toward the system changes, stabilizers and the post processor are designed based on fuzzy logic. The proposed method is evaluated on the two area test system in MATLAB environment. The obtained results show that the post processor, by minimizing the negative interactions among the power system stabilizers, can satisfactorily improve the small signal stability and decrease the sensitivity of these stabilizers regard to variations in operating conditions simultaneously.

کلیدواژه‌ها [English]

  • Power system stabilizer
  • Interaction
  • DRGA
  • Fuzzy post processor

[1] K. R. Padiyar, "Power System Dynamics and Control", John Wiley, 1996.
[2] N. Martins, "Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies", IEEE Transactions on Power Systems, Vol. 1, NO. 1, February 1986, pp. 217 – 224.
[3] M. Klein, G. J. Rogers, and P. Kundur, "A fundamental study of inter-area oscillations in power systems", IEEE Transactions on power systems, Vol. 6, NO. 3, August 1991, pp. 914 – 921.
[4] N. Sumathi, M. P. Selvan, and N. Kumaresan, "A Hybrid Genetic Algorithm based Power System Stabilizer", International Conference on Intelligent and Advanced Systems, Kuala Lumpur, Malaysia, November 2007, pp. 876 – 881.
[5] P. Jiang, W. Yan, and W. Gu, "PSS Parameter Optimization with Genetic algorithm", In Electric Utility Deregulation and Restructuring and Power Technologies, DRPT, Nanjing China, April 2008, pp. 900 – 903.
[6] A. Sil, T. K. Gangopadhyay, S. Paul, and A. K. Maitra, "Design of robust Power System Stabilizer using H ∞ mixed sensitivity technique", Third Intl, Conf, on Power Systems, Kharagpur, India, December 2009, pp. 1 – 4.
[7] M. J. Gibbard, "Robust design of fixed-parameter stabilizers over a wide range of operating conditions", IEEE Transactions on Power Systems, Vol. 6, NO. 2, May 1991, pp. 794 – 800.
[8] P. V. Etingov, and N. I. Voropai, "Application of Fuzzy Logic PSS to Enhance Transient Stability in Large Power Systems", International Conference on Power Electronics, Drives and Energy Systems for Industrial, New Delhi, December 2006, pp. 1 – 9.
[9] M. Cloughley, K. M. Muttaqi, and H. Du, "Damping of low-inertia machine oscillations using Takagi-Sugeno fuzzy stabiliser tuned by genetic algorithm optimisation to improve system stability", IET Generation, Transmission & Distribution, Vol. 8, NO. 2, February 2014, pp. 339 – 352.
[10] A. Gholipour, H. Lesani, and M. K. Zadeh, "Performance of a ANFIS based PSS with tie line active power deviation feedback", 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), IEEE, Vol. 2, December 2009, pp. 267 – 273.
[11] M. Kushwaha, and R. Khare, "Dynamic stability enhancement of power system using fuzzy logic based power system stabilizer", International Conference on Power, Energy and Control (ICPEC), IEEE, February 2013, pp. 213 – 219.
[12] M. J. Gibbard, "Coordinated design of multi machine power system stabilizers based on damping torque concepts", In IEE Proceedings Generation, Transmission and Distribution, Vol. 135, NO. 4, July 1988, pp. 276 – 284.
[13] G. J. Dudgeon, W. E. Leithead, A. Dysko, J. o'Reilly, and J. R. McDonald, "The effective role of AVR and PSS in power systems: Frequency response analysis", IEEE Transactions on Power Systems, Vol. 22, NO. 4, November 2007, pp. 1986 – 1994.
[14] A. Dysko, W. E. Leithead, and J. O'Reilly, "Enhanced Power System Stability by Coordinated PSS Design",IEEE Transactions on Power Systems, Vol. 25, NO. 1, February 2010, pp. 413 – 422.
[15] T. Hussein, and A. Shamekh, "Adaptive rule-base fuzzy power system stabilizer for a multi-machine system", In Control & Automation (MED), 21st Mediterranean Conference on, June 2013, pp. 1514 – 1519.
[16] M. Dubey, and N. E. Mastorakis, "Design of Genetic Algorithm Based Fuzzy Logic Power System Stabilizers in Multimachine Power System", system, Vol. 6, October 2013, pp. 8 – 18.
[17] K. Krishnan, and L. Ponnusamy, "Optimal design of power system stabilizer in a multi-machine system using GSO approach", In Electrical Energy Systems (ICEES), 2nd International Conference on IEEE, January 2014, pp. 38 – 43.
[18] M. J. Gibbard, D. J. Vowles, and P. Pourbeik, "Interactions between, and effectiveness of power system stabilizers and FACTS device stabilizers in multimachine systems", IEEE Transactions on Power Systems, Vol. 15, NO. 2, May 2000, pp. 748 – 755.
[19] E. Bristol, "On a new measure of interaction for multivariable process control", IEEE transactions on automatic control, Vol. 11, NO. 1, January 1996, pp. 133 – 134.
[20] M. F. Witcher, "Interacting control systems: steady state and dynamic measurement of interaction", ISA Trans, Vol. 16, 1977, pp. 35 – 41.
[21] M. C. Arranz, and W. Birk, "New Approach to the Dynamic RGA Analysis of Uncertain Systems", IEEE Multi-conference on Systems and Control, San Antonio, Texas, USA, September 2008, pp. 365 – 370.
[22] J. E. Rijnsdorp, "Interaction in two-variable control systems for distillation columns - i and ii", Automatica, Vol. 3, NO. 1, October 1965, pp. 15 – 28.
[23] D. Chen, and D. E. Seborg, "Relative gain array analysis for uncertain process models", AIChE journal, Vol. 48, NO. 2, February 2002, pp. 302 – 310.
[24] A. Mahabuba, and M. A. Khan, "Optimal Location of Power System Stabilizers in Multi Machine Power System Using Relative Gain Array (RGA) and Genetic Algorithm (GA)", International Journal of Electrical and Power Engineering, Vol. 2, NO. 1, 2008, pp. 19 – 27.
[25] A. Dysko, W. E. Leithead, and J. O'Reilly, "Enhanced power system stability by coordinated pss design", IEEE Transactions on Power Systems, Vol. 25, NO. 1, February 2010, pp. 413 – 422.
[26] Z. Barton, "Robust control in a multimachine power system using adaptive neuro-fuzzy stabilizers", IEE Proceedings-Generation, Transmission and Distribution, Vol. 151, NO. 2, March 2004, pp. 261 – 267.
[27] M. M. Linda, and N. K. Nair, "Dynamic stability enhancement with fuzzy based power system stabilizer tuned by hottest non-traditional optimization technique", International Conference on Computing Communication and Networking Technologies (ICCCNT), IEEE, July 2010, pp. 1 – 5.
[28] P. Kundur, N. J. Balu, and M. G. Lauby, "Power System Stability and Control", New York: McGraw-hill, January 1994.