طراحی کنترل تطبیقی L1 برای پایدارسازی سیستم های آشوبناک با وجود نامعینی در مدل

نوع مقاله: مقاله برق

نویسندگان

دانشگاه آزاد اسلامی گرمسار

چکیده

در این مقاله، استراتژی کنترل تطبیقی L1 برای پایدارسازی سیستم‌های آشوبناک با وجود نامعینی در مدل پیشنهاد می‌شود. برای طراحی کنترل‌کننده، نخست دینامیک سیستم به دو بخش خطی و غیرخطی تفکیک می‌شود. بخش خطی توسط فیدبک حالت جایابی و به رفتار یک مدل مرجع همگرا می‌شود. بخش غیرخطی شامل نامعینی توسط کنترل تطبیقی مبتنی بر الگوریتم تطبیق تصویر جبران می‌شود. این بخش شامل برداری مجهول در نرم بی‌نهایت بردار حالت و برداری معرف آفست است.یک رویتگر حالت هم رفتار مدل مرجع را توصیف می‌کند. همچنین، از پیش فیلترهای مرتبه اول با بهره واحد برای افزایش حاشیه پایداری استفاده می‌شود. ویژگی اصلی کنترل تطبیقی L1 مواجهه با هر دو نوع نامعینی‌های پارامتری و غیر پارامتری می‌باشد. تحلیل پایداری سیستم حلقه بسته بر مبنای تئوری لیاپانوف ارائه‌ شده و عملکرد سیستم کنترلی با یکی از روش‌های کنترل تطبیقی مرسوم مورد مقایسه و ارزیابی قرار می‌گیرد. نتایج حاکی از عملکرد مطلوب روش پیشنهادی در پایدارسازی سیستم آشوبناک با وجود نامعینی در مدل می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Designing L1 Adaptive Control for stabilizing Chaotic Systems with Uncertainty in the model

نویسندگان [English]

  • Abdollah Abbasi
  • samaneh sadat aghaamoo
چکیده [English]

In this paper, L1 adaptive control strategy for stabilizing chaotic systems in the presence of model uncertainty is proposed. In order to design controller, first, system dynamics is divided into two linear and nonlinear parts. The linear part is converged by placement feedback to the reference model behavior. The uncertain nonlinear part is compensated through adaptive control based on projection adaptive algorithm. This part includes a unknown vector multiplied at infinity norm of state vector and a vector as offset. A state observer also describes reference model behavior. In addition, first order pre-filters with unity gain are used to increase the stability margin. The main property of L1 adaptive control is encountering both parametric and nonparametric uncertainties. Stability analysis of the closed loop system is presented based on Lyapunov theory, and the control system performance is compared and evaluated with one of the conventional adaptive control methods. The results indicate the desirable performance of the proposed method for stabilizing the chaotic system in the presence of model uncertainty.

کلیدواژه‌ها [English]

  • Chaotic System
  • L1 Adaptive Control
  • Stabilization
  • Uncertainty
[1] A. L. Fradkov, and R. J. Evans, "Control of chaos: methods and applications in engineering", Annual Reviews
in Control, Vol. 29, NO. 1, January 2005, pp. 33 – 56.
[2] A. L. Fradkov, and R. J. Evans, "Control of chaos: survey 1997-2000", IFAC Proceedings Volumes, Vol. 35,
NO. 1, January 2002, pp. 131 – 142.
[3] E. Ott, C. Grebogi, and J. A. Yorke, "Controlling chaos", Physical Review Letters, Vol. 64, NO. 11, March
1990, pp. 1196 – 1199.
[4] W. L. Ditto, S. N. Rausseo, and M. L. Spano, "Experimental control of chaos", Physical Review Letters, Vol.
65, NO. 26, December 1990, pp. 3211 – 3215.
[5] K. Pyrags, "Continuous control of chaos by self-controlling feedback", IEEE Transactions on Energy
Conversion, Vol. 170, NO. 6, November 1992, pp. 421 – 428.
[6] V. G. Ivancevic, and T. T. Ivancevic, "Computational mind: a complex dynamics perspectives", Speringer-
Verlag, Berlin, 2007.
[7] S. Boccaletti, C. Grabogi, Y. C. Lai, H. Mancini, and D. Maza, "The control of chaos-theory and applications",
Physics Reports, Vol. 329, NO. 3, May 2000, pp. 103 – 197.
[8] X. T. Tran, and H. J. Kang, "Robust adaptive chatter-free finite-time control method for chaos control and
(anti-)synchronization of uncertain (hyper) chaotic systems", Nonlinear Dynamics, Vol. 80, NO. 1-2,
April 2015, pp. 637 – 651.
[9] L. Guo, M. Hu, Z. Xu, and A. Hu, "Synchronization and chaos control by quorum sensing mechanism",
Nonlinear Dynamics, Vol. 73, NO. 3, August 2013, pp. 1253 – 1269.
[10] C. F. Huang, J. S. Lin, T. L. Liao C. Y. Chen and J. J. Yan, "Quasi-sliding mode control of chaos in permanent
magnet synchronous motor", Mathematical Problems in Engineering, Vol. 2011, 2011, pp. 1 – 10.
[11] J. Yang, and L. Zhao, "Bifurcation analysis and chaos control of the modified Chua’s circuit system",
Nonlinear Science, and Nonequilibrium and Complex Phenomena, Vol. 77, August 2015, pp. 332 – 339.
[12] J. Wang, X. Chen, and J. Fu, "Adaptive finite-time control of chaos in permanent magnet synchronous motor
with uncertain parameters", Nonlinear Dynamics, Vol. 78, NO. 2, October 2014, pp. 1321 – 1328.
[13] H. J. Wang, Z. Z. Han, H. Zhao Hui, and Y. J. Yue, "Controlling chaos in power system based on tridiagonal
structure matrix stability theory", IEEE Transactions on Energy Conversion, Vol. 588, 2012, pp. 622 –
625.
[14] D. Franco, and E. Liz, "A two-parameter method for chaos control and targeting in one-dimensional maps",
International Journal of Bifurcation and Chaos, Vol. 23, NO. 1, January 2013, p. 1350003.
[15] M. P. Aghababa, "Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic(hyperchaotic) systems using fractional nonsingular terminal sliding mode technique", Nonlinear Dynamics, Vol. 69, NO. 1-2, Julay 2012, pp. 247 – 261.
[16] A.E. Matouk, "Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit", Communications in Nonlinear Science and Numerical Simulation, Vol. 16, NO. 2, February 2011, pp. 975 – 986.
[17] M.M. El-Dessoky, M.T. Yassen, and E.S. Aly, "Bifurcation analysis and chaos control in Shimizu–Morioka chaotic system with delayed feedback", Applied Mathematics and Computation, Vol. 243, September 2014, pp. 283 – 297.
[18] H. Li, X. Liao, C. Li, and C. Li, "Chaos control and synchronization via a novel chatter free sliding mode control strategy", Neurocomputing, Vol. 74, NO. 17, October 2011, pp. 3212 – 3222.
[19] T. Wang, and N. Jia, "Chaos control and hybrid projective synchronization of several new chaotic systems", Applied Mathematics and Computation, Vol. 218, NO. 13, March 2012, pp. 7231 – 7240.
[20] Y. Kawai, and T. Tisubone, "Chaos control based on stability transformation method for unstable periodic orbits", Nonlinear Theory and Its Applications, Vol. 3, NO. 2, 2012, pp. 246 – 256.
[21] M. Sadeghpour, M. Khodabakhsh, and H. Salarieh, "Intelligent control of chaos using linear feedback controller and neural network identifier", Communications in Nonlinear Science and Numerical Simulation, Vol. 17, NO. 12, December 2012, pp. 4731 – 4739.
[22] J. Qi, and X. Zhang, "Robust synchronization of drive-response chaotic systems via adaptive chatter free sliding mode control", InControl Conference (CCC), 2016 35th Chinese, July 2016, pp. 688 – 691.
[23] G. Li, "Synchronization of uncertain chaotic neural networks with time delays based on sliding mode control", InControl Conference (CCC), 2016 35th Chinese, July 2016, pp. 786 – 789.
[24] P. Ioannou, and K. Author3, "Adaptive Control Tutorial", 2nd Edition, Society for Industrial and Applied Mathematics, Philadelphia, 2006.
[25] N. Hovakimyan, and C. Cao, "L1 adaptive Control Theory Guaranteed Robustness with Fast Adaptation ", SIAM books, 3600 University City Science, Center, Philadelphia, 2010.
[26] X. Zhang, X. Liu, and Q. Zhu, "Adaptive chatter free sliding mode control for a class of uncertain chaotic systems", Applied Mathematical Modelling, Vol. 232, NO. 1, April 2014, pp. 431 – 435.
[27] S. Effati, J. Saberi Nadjafi, and H. Saberi Nik, "Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems", Applied Mathematical Modelling, Vol. 38, NO. 2, January 2014, pp. 759 – 774.