شناسایی خسارت در سازه با استفاده از پردازش سیگنال و شبکه های عصبی مصنوعی

نوع مقاله : پژوهشی

نویسندگان

1 دانشگاه صنعتی خواجه نصیر الدین طوسی

2 دانشگاه آزاد اسلامی

چکیده

در طول دو دهه اخیر بحث شناسایی خرابی و پایش سلامت سازه ها با هدف کاهش هزینه نگهداری و بهبود ایمنی و قابلیت اطمینان سازه مورد توجه قرار گرفته است. پس از وقوع زلزله با توجه به وضعیت بحرانی موجود و تعداد زیاد سازه های بلند مرتبه امکان مراجعه حضوری به تک تک سازه ها وجود ندارد. این موضوع اهمیت توسعه روش هایی که بتوانند تنها با استفاده از سیگنال های پاسخ ثبت شده در مدت زمان زلزله، خسارت ایجاد شده در سازه را شناسایی کنند، برجسته تر می سازد. بسیاری از روش های موجود به خصوص روش های مبتنی بر پردازش سیگنال قادر به تعیین شدت خسارت نیستند، در حالی که تعیین شدت به عنوان یکی از اهداف اصلی شناسایی خسارت در تعیین اولویت ها و مدیریت بحران پس از وقوع زلزله نقش به سزایی دارد. در این مقاله تلاش شده است تا با بهره گیری از ابزار های پردازش سیگنال و هوش مصنوعی ویژگی های حساس به خسارت به گونه ای تعیین شوند که بتوان وجود آسیب، محل و شدت آن را تنها با استفاده از سیگنال های پاسخ ارتعاشی ثبت شده در مدت زمان زلزله، با دقت مناسب تعیین کرد. در ابتدا سه روش پردازش سیگنال زمان-فرکانس آنی مورد ارزیابی و مقایسه قرار می گیرند و روش EMD به عنوان روشی با بهترین عملکرد برای هدف شناسایی خسارت انتخاب می شود. سپس معیار خسارت مناسبی بر اساس سیگنال های خروجی از سنسور های جاسازی شده در سازه با بهره گیری از EMD استخراج می شود و در نهایت الگوریتمی برای شناسایی خسارت سازه ای ارائه و روی سازه بنچ مارک پایش سلامت سازه ASCE IASC- اعمال می شود. نتایج حاکی از آن است که تلفیق تکنیک پردازش سیگنال با هوش مصنوعی کمک شایانی به تحقق اهداف سه گانه شناسایی خسارت داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Damage detection of structures using signal processing and artificial neural networks

نویسندگان [English]

  • seyed bahram beheshti aval 1
  • vahid ahmadian 1
  • ehsan darvishan 2
1
2
چکیده [English]

Over the last two decades, extensive research has been conducted on structural health monitoring and damage detection in order to reduce the life-cycle cost of structures and improve their reliability and safety. These methods are divided into modal-based and signal-based approaches. Recent advances in the field of sensor technologies have facilitated the use of signal-based methods as practical solution to detect damages in structures. After a sever earthquake, usually there is no possibility for visiting the individual structures. Therefore, application of methods that can detect damage of structures only by using signals recorded at the time of the earthquake is noteworthy. Many existing methods, especially methods based on signal processing are not able to determine the damage severity. This article presents a signal-based seismic structural health monitoring technique for damage detection and evaluating damage severity of a multi-story frame subjected to an earthquake event. As a case study, this article is focused on IASC–ASCE benchmark problem to provide possibility for side-by-side comparison. First three signal processing techniques including EMD, HVD and LMD, which are categorized as instantaneous time-frequency methods, have been compared to find a method with the best resolution in extracting frequency responses. Based on the results EMD has proved to outperform than the others. Second, EMD is used to extract the acceleration response of the sensors. Results show that by taking advantage of signal processing and artificial intelligence techniques in this research, damage detection of structures was carried out for three levels including damage occurrence, damage severity and location of the damage.

کلیدواژه‌ها [English]

  • Damage Detection
  • Structural Health Monitoring
  • Damage Index
  • Signal Processing
  • Neural Network
[1] A. Rytter, “Vibrational based inspection of civil engineering structures”, unknown, 1993.
[2] Y. Xu, S. Chen, and R. Zhang, “Modal identification of Di Wang Building under typhoon York using the Hilbert–Huang transform method”, The Structural Design of Tall and Special Buildings, Vol. 12, No. 1, 2003, pp. 21-47.
[3] J.N. Yang, et al., “Hilbert-Huang based approach for structural damage detection”, Journal of engineering mechanics, Vol. 130, No. 1, 2004, pp. 85-95.
[4] Y. Xu, and J. Chen, “Structural damage detection using empirical mode decomposition: experimental investigation”, Journal of engineering mechanics, Vol. 130, No. 11, 2004, pp. 1279-1288.
[5] J. Liu, et al., “On Hilbert-Huang transform approach for structural health monitoring”, Journal of intelligent material systems and structures, Vol. 17, No. 8-9, 2006, pp. 721-728.
[6] H. Chen, Y. Yan, and J. Jiang, “Vibration-based damage detection in composite wingbox structures by HHT”, Mechanical systems and signal processing, Vol. 21, No. 1, 2007, pp. 307-321.
[7] H. Li, X. Deng, and H. Dai, “Structural damage detection using the combination method of EMD and wavelet analysis”, Mechanical Systems and Signal Processing, Vol. 21, No. 1, 2007, pp. 298-306.
[8] N. Roveri, & A. Carcaterra, “Damage detection in structures under traveling loads by Hilbert–Huang transform”, Mechanical Systems and Signal Processing, Vol. 28, 2012, pp. 128-144.
[9] A. Kunwar, R. Jha, M. Whelan, & K. Janoyan, “Damage detection in an experimental bridge model using Hilbert–Huang transform of transient vibrations” Structural Control and Health Monitoring, Vol. 20, No. 1, 2013, pp. 1-15.
[10] Y. Huang, C. J. Yan, & Q. Xu, “On the difference between empirical mode decomposition and Hilbert vibration decomposition for earthquake motion records” In 15th World Conference on Earthquake Engineering, 2012.
[11] L. Wang, T. H. Chan, “Review of vibration-based damage detection and condition assessment of bridge structures using structural health monitoring” QUT Conference Proceedings, 2009.
[12] B. Chen, S. L. Zhao, & P. Y. Li, “Application of Hilbert-Huang transform in structural health monitoring: a state-of-the-art review” Mathematical Problems in Engineering, 2014.
[ 13 [ ص. امید، "آشنایی مقدماتی با ویولت"، دانشگاه صنعتی شریف، 1387 .
[14] G. Yan, L.L. Zhou, and F. Yuan, “Wavelet-based built-in damage detection and identification for composites. in Smart Structures and Materials”, International Society for Optics and Photonics, 2005.
[15] E. Johnson, et al., “Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data”, Journal of Engineering Mechanics, Vol. 130, No. 1, 2004, pp. 3-15.
[16] N.E. Huang, et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1998.
[17] J.S. Smith, “The local mean decomposition and its application to EEG perception data”, Journal of the Royal Society Interface, Vol. 2, No. 5, 2005, pp. 443-454.
[18] M. Feldman, “Time-varying vibration decomposition and analysis based on the Hilbert transform”, Journal of Sound and Vibration, Vol. 295, No. 3, 2006, pp. 518-530.
[19] J. Chen, and G. Zhao, “Numerical and Experimental Investigation on Parameter Identification of Time-Varying Dynamical System Using Hilbert Transform and Empirical Mode Decomposition”, Mathematical Problems in Engineering, 2014.