مدل سازی پیش بینی اندازه کلوخه های نانو ذرات آب دوست طی فرآیند سیال سازی با تأکید بر نقش بخار مواد قطبی

نوع مقاله: مقاله شیمی

نویسندگان

دانشگاه تبریز

چکیده

در این مقاله یک مدل بر اساس موازنه نیرو با در نظرگرفتن اهمیت نیروهای پیوند هیدروژنی، ون­دروالس و گرانشی برای تخمین اندازه تعادلی کلوخه­های شکل­گرفته طی سیال­سازی نانوذرات گسترش داده می­شود. همچنین تأثیر بخار مواد قطبی مختلف شامل متانول، اتانول، 1- پروپانول، 2- پروپانول، 1- بوتانول، 2- بوتانول و آمونیاک بر اندازه کلوخه­های نانوذرات سیلیکا و کیفیت سیال­سازی آنها با استفاده از انجام آزمایش­هایی در یک راکتور بستر سیال مورد بحث و بررسی قرار می­گیرد. آزمایش­ها نشان می­دهند که استفاده از این مواد موجب بهبود چشمگیر کیفیت سیال­سازی و دست­یابی به انبساط بستر بالا برای نانوذرات سیلیکای آب­دوست می­شوند. در همین راستا برای بررسی نحوه تأثیر استفاده از بخار مواد قطبی مختلف دارای پیوند هیدروکسیل بر کیفیت سیالیت نانوذرات آب­دوست، نیروی دافعه الکترواستاتیک به مدل اضافه شده و اندازه کلوخه­ها با در نظر گرفتن این نیرو محاسبه می­گردد. نتایج بدست آمده تطابق خوبی بین اندازه محاسبه شده توسط مدل و مشاهدات آزمایشگاهی نشان می­دهند. بطوریکه تأثیر الکل­های متانول، 2- پروپانول و اتانول در بهبود کیفیت سیال­سازی نانوذرات سیلیکای آب‌دوست نسبت به سایر مواد بیشتر بوده و متعاقباً کوچکترین اندازه کلوخه­ها نیز در حضور این سه الکل محاسبه می­گردد. همچنین اندازه کلوخه­های محاسبه شده با استفاده از مدل پیشنهادی در مقایسه با اندازه کلوخه­های اندازه­گیری شده با تصویربرداری لیزری، خطای کمتر از 11 % را نشان می­دهد که این خطا در مقایسه با مدل­های ارائه شده توسط دیگر پژوهشگران کمتر می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the size of hydrophilic nanoparticles during fluidization with emphasis on the role of vapor of polar materials

نویسندگان [English]

  • Maryam Tahmasebpoor
  • Parastoo Badamchizadeh
Faculty of Chemical & Petroleum Engineering, University of Tabriz, Iran
چکیده [English]

In this study, a comprehensive force balance model is developed to estimate the equilibrium size of agglomerates formed during the fluidization of nanoparticles with considering the importance of hydrogen bond, van der Waals and gravitational forces. Also, the influence of vapor of different polar materials (including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and ammonia) on the size of hydrophilic silica nanoagglomerates and consequently their fluidization behavior is studied by experiments in a gas-solid fluidized bed. The results show that using vapor of these polar materials (with hydroxyl groups in their formula) improves the fluidization behavior of hydrophilic silica nanoparticles significantly and results in a higher bed expansion. To justify the improving effect of different vapor of polar materials on fluidization behavior, the electrostatic repulsion force is added to the model and size of agglomerates are calculated in the presence of this force. It is obtained that the results of model are in good agreement with the experimental observations, so that, among all used materials methanol, 2-propanol and ethanol have the most effective impact on fluidization improvement and the smallest size of agglomerates is estimated using physical properties of these three alcohols as well.  Finally, the size of agglomerates calculated by the model shows error less than 11% compared with the size of agglomerates measured experimentally by laser. This error is lower than the previous reported ones in the literature.

کلیدواژه‌ها [English]

  • Fluidization
  • Nanoparticles
  • Force balance
  • Electrostatic repulsion
  • Hydrogen bond
  • Agglomerate
1 [ ن.، یعقوبی، س.، سیدنژادیان، ر. مغربی، "سینتیک و پدیده های انتقال در جفت شدن اکسایشی متان: مدلسازی CFD در مقیاس
دانه ای"، مجله مدلسازی در مهندسی، شماره 39 ، 1393 ، صفحه 141 - 123 .
[ 2 [ م.، خواجه نوری، ع.، حقیقی اصل، م.ح.، ایکانی، "مدل سازی فرآیند استخراج با آب دمای زیر بحرانی از گیاهان دارویی"، مجله مدل
سازی در مهندسی، دوره 11 ، شماره 32 ، 1392 ، صفحه 91 - 83 .
[ 3 [ ح.، حسینی، ا.، محصلی، "مطالعه انتقال حرارت از دیواره بستر حبابی گاز - جامد به ذرات جامد درون آن به کمک دینامیک سیالات
محاسباتی"، مجله مدلسازی در مهندسی، دوره 14 ، شماره 40 ، 1395 ، صفحه 130 - 123 .
[ 4 [ ف.، یحیی زاده ساروی، م.ر.، قاسمی، ع.، حکمت ناظمی، "مدلسازی بستر سیال فرایند FCC بر مبنای تغییر اندازه ذرات کلاستر در
طول رایزر"، مجله مدلسازی در مهندسی، دوره 10 ، شماره 30 ، 1391 ، صفحه 97 - 87 .
[ 5 [ م.ر.، تمدن دار، " بررسی رفتار هیدرودینامیکی نانوذرات در بستر سیال"، پایاننامه کارشناسی ارشد، دانشکده مهندسی شیمی، دانشگاه
تهران، ایران، 1393 .
[6] W. Yao, G. Guangsheng, W. Fei, W. Jun, "Fluidization and agglomerate structure of SiO2 nanoparticles", Powder Technology, Vol. 124, No. 1-2, 2002, pp. 152-159.
[7] M. Tahmasebpoor, L. de Martín, M. Talebi, N. Mostoufi, J.R. van Ommen, "The role of the hydrogen bond in dense nanoparticle–gas suspensions", Physical Chemistry Chemical Physics, Vol. 15, No. 16, 2013, pp.
5788-5793.
[8] T. Zhou, H. Li, "Estimation of agglomerate size for cohesive particles during fluidization", Powder Technology, Vol. 101, No. 1, 1999, pp. 57-62.
[9] T. Zhou, H. Li, "Force balance modelling for agglomerating fluidization of cohesive particles", Powder technology, Vol. 111, No. 1-2, 2000, pp. 60-65.
[10] M.R. Tamadondar, R. Zarghami, K. Boutou, M. Tahmasebpoor, N. Mostoufi, "Size of nanoparticle agglomerates in fluidization", The Canadian Journal of Chemical Engineering, Vol. 94, No. 3, 2016, pp. 476-484.
[11] L. de Martín, J.R. van Ommen, "A model to estimate the size of nanoparticle agglomerates in gas− solid fluidized beds", Journal of nanoparticle research, Vol. 15, 2013, pp. 1-9.
[12] J.N. Israelachvili, "Intermolecular and surface forces", Revised third edition, Academic press, (2011).
[13] H. Krupp, "Particle adhesion, theory and experiment", Advances Colloid and Interface Science, Vol. 1, No. 2, 1967, pp. 111-239.
[14] S. Matsuda, H. Hatano, T. Muramoto, A. Tsutsumi, "Modeling for size reduction of agglomerates in nanoparticle fluidization", AIChE journal, Vol. 50, 2004, pp. 2763-2771.
[15] H.J. Butt, M. Kappl, "Surface and interfacial forces", John Wiley & Sons, 2009.
[16] G.A. Jeffrey, W. Saenger, "Hydrogen Bonding in Biological Structures", Springer Verlag, Berlin/New York, 1991.
[17] F. Barbagini, "A Fundamental Study of Particle-Substrate Interactions in Liquids of Low Polarity", Ph.D. Thesis, University of Leuven, Belgium, 2009.
[18] J.F. Richardson, W.N. Zaki, "Sedimentation and fluidisation: Part I", Trans. Inst. Chem. Eng., Vol. 32, 1954, pp. 35-53.
[19] C. Zhu, Q. Yu, R.N. Dave, R. Pfeffer, "Gas fluidization characteristics of nanoparticle agglomerates", AIChE Journal, Vol. 51, 2005, pp. 426-439.
[20] J. Yang, T. Zhou, L. Song, "Agglomerating vibro-fluidization behavior of nano-particles", Advanced Powder Technology, Vol. 20, 2009, pp. 158-163.
[21] W.M. Haynes, ed. "CRC Handbook of Chemistry and Physics", 96th Edition (Internet Version); CRC Press/Taylor and Francis: Boca Raton, FL, 2016.
[22] M. Kosmulski, P. Eriksson, C. Brancewicz, J.B. Rosenholm, "Zeta potentials of monodispersed, spherical silica particles in mixed solvents as a function of cesium chloride concentration", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 162, No. 1-3, 2000, pp. 37-48.
[23] A. Lazaro, G. Quercia, H. Brouwers, "Production and application of a new type of nano-silica in concrete", in Proceedings of the international conference on building materials, Finger-Institut fur Baustoffkunde, Weimar, Germany, 2012, pp. 1-6.
[24] J.R. van Ommen, J.M. Valverde, R. Pfeffer, "Fluidization of nanopowders: a review", Journal of nanoparticle research, Vol. 14, 2012, pp. 1-29.
[25] J.M. Valverde, A. Castellanos, "Fluidization of nanoparticles: a simple equation for estimating the size of agglomerates", Chemical Engineering Journal, Vol. 140, No. 1-3, 2008, pp. 296-304.
[26] C.H. Nam, R. Pfeffer, R.N. Dave, S. Sundaresan, "Aerated vibrofluidization of silica nanoparticles", AIChE Journal, Vol. 50, No. 8, 2004, pp. 1776-1785.
[27] D.J. Shaw, "Colloid and Surface Chemistry, 4th Edition, Butterworth-Heinemann", Oxford, England, 1992.
[28] J.A. Quevedo, R. Pfeffer, "In situ measurements of gas fluidized nanoagglomerates", Industrial & Engineering Chemistry Research, Vol. 49, No. 11, 2010, pp. 5263-5269.
[29] L.F. Hakim, J.L. Portman, M.D. Casper, A.W. Weimer, "Aggregation behavior of nanoparticles in fluidized beds", Powder Technology, Vol. 160, No. 3, 2005, pp. 149-160.