[1] Cong, H., Radosz, M., Towler, B. F. and Shen, Y. (2007). “Polymer–inorganic nanocomposite membranes for gas separation” Separation and Purification Technology, Vol 55, pp. 281-291.
[2] Jiang, D. E., Cooper, V. R and Dai, S. (2009). “Porous graphene as the ultimate membrane for gas separation” Nano Letter, Vol 9, pp. 4019-4024.
[3] Koenig S. P., Wang L., Pellegrino J. and Bunch J. S. (2012). “Selective molecular sieving through porous graphene” Nature Nanotechnology, Vol 7, pp. 728-732.
[4] Kim, H. W., Yoon, H. W., Yoon, S. M., Yoo, B. M., Ahn, B. K., Cho, Y. H., Shin, H. J., Yang, H., Paik, U., Kwon, S., Choi, J.-Y. and Park, H. B. (2013). “Selective gas transport through Few-Layered graphene and graphene oxide membranes” science magazine, Vol 342, pp. 91-95.
[5] Shen, J., Liu, G., Huang, K., Jin, W., Lee, K.-R. and Xu, N. (2015). “Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture” Angewandte Chemie International Edition, Vol 54, pp. 578–582.
[6] Huang, A., Liu, Q., Wang, N., Zhu, Y. and Caro, J. (2014). “
Bicontinuous zeolitic imidazolate framework ZIF-8/ GO membrane with enhanced hydrogen selectivity” American Chemical Society, Vol 136, pp. 14686–14689.
[7] Huang, K., Yuan, J., Shen, G., Liu, G., Jin, W. (2016). Graphene oxide membranes supported on the ceramic hollow fiber for efficient H2 recovery, Chinese journal of chemical engineering.
[8] Acar, C. and Dincer, I. (2014). “Comparative assessment of hydrogen production methods from renewable and non-renewable sources” Hydrogen Energy, Vol 39, pp. 1-12.
[9] Ghasemzadeh, K, Zeynali, R, Basile A,(2016), Theoretical study of hydrogen production using inorganic membrane reactors during WGS reaction, International Journal of Hydrogen Energy, Vol 41, pp. 8696-8705.
[10] Aboudheir, A., Akande, A., Idem, R., and Dalai, A. (2006). “Experimental studies and comprehensive reactor modeling of hydrogen production by the catalytic reforming of crude ethanol in a packed bed tubular reactor over a Ni/Al2O3 catalyst” Hydrogen Energy, Vol 31, pp. 752-761.
[11] Adhikari, S., and Fernando, S. (2006). “Hydrogen membrane separation techniques” Industrial & Engineering Chemistry Research, Vol 45, pp. 875-881.
]12[ مویدی، م.، پورقاضی م.م، (1395)، مدلسازی ریاضی و شبکه عصبی در غشاهای مایع آمین گلیکول برای جداسازی دی اکسید کربن از هوا، نشریه علمی و پژوهشی مدلسازی در مهندسی، دانشگاه سمنان، شماره 47. ص. 60-51.
[13] یعقوبی، ن.، سید نژادیان، س.، مغرضی، ر. (1393)، سینتیک و پدیده های انتقال و جفت شدن اکسایشی متان : مدلسازی CFD در مقیاس دانه ای، نشریه علمی و پژوهشی مدلسازی در مهندسی، دانشگاه سمنان، شماره 39.ص. 141-123.
]14[ حسینی س. ح.، محصلی آ.، (1395)، مطالعه انتقال حرارت از دیواره بستر حبابی گاز-جامد به ذرات جامد درون آن به کمک دینامیک سیالات محاسباتی، نشریه علمی و پژوهشی مدلسازی در مهندسی، دانشگاه سمنان، شماره 46.ص. 136-123.
[15] Jiang. D. E, Cooper. V. R. and Dai. S. (2009). “Porous graphene as the ultimate membrane for gas separation” Nano Letter, 9, pp. 4019–4024.
[16] Armor, J. N. (1999). “The multiple roles for catalysis in the production of H2” Applied Catalysis A: General, Vol 176, pp. 159-176.
[17] Jiang, D. E., Cooper, V. R. and Dai, S. (2009). “Porous graphene as the ultimate membrane for gas separation” Nano Letter,Vol 9, pp. 4019–4024.
[18] Du, H., Li, J., Zhang, J., Su, G., Li, X., and Zhao, Y. (2011). “Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane” Physical Chemistry, Vol 115, pp. 23261-23266.
[19] Shan, M., Xue, Q., Jiang, N., Ling, C.,Zhang, T.,Yan, Z. and Zheng, J. (2012). “Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes” Nanoscale, Vol 4, pp. 5477–5482.
[20] Drahushuk, L. W., and Strano, M.S. (2012). “Mechanism of gas permeation through single layer graphene membranes” Langmuir, Vol 28, pp. 16671–16678.
[21] Schrier, J. (2012). “Carbon dioxide separation with a two-dimensional polymer membrane” American Chemical Society Applied Materials & Interfaces, Vol 4, pp. 3745–3752.
[22] Khakpay, A., Rahmani, F., Nouranian, S., and Scovazzo, P. (2017). “Molecular Insights on the CH4/CO2 Separation in Nanoporous Graphene and Graphene Oxide Separation Platforms: Adsorbents versus Membranes,” Physical Chemistry, Vol 121, pp. 12308-12320.
[23] Nair, R. R., Wu, H. A., Jayaram, P. N. and Geim,A. K. (2012). “Unimpeded permeation of water helium-leak-tight graphene-based membranes” Science, Vol 335, pp. 442–444.
[24] Song, H. Li, Zhang, Z, X., Huang, Y., Li, S., Mao, Y., Ploehn, H. J., Bao, Y., Yu, M. (2013). “Ultrathin, molecular sieving graphene oxide membranes for selective hydrogen separation” Science, Vol 342, pp. 95–98.
[25] Yeh C-N, Raidongia K, Shao J, Yang O-H, Huang J. (2014). On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170.
[26] Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. (2014). A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew. Chem. Vol 53, 6929–6932.
[27] Ghasemzadeh, K, Aghaeinejad-Meybodi, A, Vaezi, MJ, Gholizadeh, A, Abdi M. A., A, Babaluo, A. A, Haghighib, M and Basile, A.(2015).Hydrogen production via silica membrane reactor during the methanol steam reforming process: experimental study RSC Advances 5 ,116, 95823-95832.