1] A. J. Crawford, Q. Huang, M. C. Kintner-Meyer, J.-G. Zhang, D. M. Reed, V. L. Sprenkle, et al. , 2018, "Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations", Journal of Power Sources, vol. 380, pp. 185-193.
[2] D. Liu, W. Xie, H. Liao, and Y. Peng, 2015, "An integrated probabilistic approach to lithium-ion battery remaining useful life estimation," IEEE Transactions on Instrumentation and Measurement, vol. 64, pp. 660-670.
[3] D. Liu, H. Wang, Y. Peng, W. Xie, and H. Liao, 2013, "Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction," Energies, vol. 6, pp. 3654-3668.
[4] احمدی، س؛ بطحایی، م،ت؛ 1396، " مدلسازی و شبیهسازی راهبردهای بهینه ی مدیریت انرژی در خودروی هیبرید پیل سوختی"، مجله مدل سازی در مهندسی، دوره 15، شماره 50، 1-16.
[5] S. Ramakrishnan, S. Venugopalan, and A. E. Jeyakumar, 2010, "Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries," arXiv preprint arXiv:1004.448.
[6] ﻛﺮﻳﻤﻲزاد ﮔﻮﻫﺮی، ف؛ ﺷﺎﻫﺴﻮﻧﺪ، ا؛ علیخان محمدآباد، ص؛ 1390، "ﺑﺮرﺳﻲ ﺗﺠﺮﺑﻲ ﻣﺪل و ﺳﺎزی اﻧﺘﻘﺎل ﺟﺮم و اﻧﺘﻘﺎل ﺣﺮارت ﻫﻤﺰﻣﺎن در ﻛﺎﻧﺎل اﻓﻘﻲ ﻫﻤﺮاه ﺑﺎ اﺛﺮات دﻳﻮاره"، مجله مدل سازی در مهندسی، دوره 9، شماره 24، 84-95 .
[7] ﻛﺮﻳﻤﻲزاد ﮔﻮﻫﺮی، ف؛ ﺷﺎﻫﺴﻮﻧﺪ، ا؛ 1392، " ﻣﻘﺎﻳﺴﻪ ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ از ﺷﺒﻜﻪ در ﭘﻴﺶ RBF وMLP ﻫﺎی ﻋﺼﺒﻲ ﺑﻴﻨﻲ ﻧﺘﺎﻳﺞ ﺣﺎﺻﻞ از ﻫﻤﺰﻣﺎﻧﻲ ﭘﺪﻳﺪه ﻫﺎی اﻧﺘﻘﺎل ﺟﺮم و اﻧﺘﻘﺎل ﺣﺮارت"، مجله مدل سازی در مهندسی، دوره 11، شماره 33، 27-43.
[8] P. Rong and M. Pedram, 2006, "An analytical model for predicting the remaining battery capacity of lithium-ion batteries," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, pp. 441-451.
[9] E. Sarasketa-Zabala, E. Martinez-Laserna, M. Berecibar, I. Gandiaga, L. Rodriguez-Martinez, and I. Villarreal, 2016, "Realistic lifetime prediction approach for Li-ion batteries," Applied Energy, vol. 162, pp. 839-852.
[10] M. Abe, K. Nishimura, S. E. Seki, H. Haruna, T. Hirasawa, S. Ito, 2012, "Lifetime prediction for heavy-duty industrial lithium-ion batteries that enables highly reliable system design," Hitachi Review, vol. 61, p. 259.
[11] M. Hu, J. Wang, C. Fu, D. Qin, and S. Xie, "Study on Cycle-Life Prediction Model of Lithium-Ion Battery for Electric Vehicles," International Journal of Electrochemical Science, vol. 11, pp. 577-589, 2016.
[12] J. Schmalstieg, S. Käbitz, M. Ecker, and D. U. Sauer, "From accelerated aging tests to a lifetime prediction model: Analyzing lithium-ion batteries," in Electric Vehicle Symposium and Exhibition (EVS27), 2013 World, 2013, pp. 1-12: IEEE.
[13] M. Ecker et al., "Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data," Journal of Power Sources, vol. 215, pp. 248-257, 2012.
[14] V. Ramadesigan, P. W. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, 2012, "Modeling and simulation of lithium-ion batteries from a systems engineering perspective," Journal of The Electrochemical Society, vol. 159, pp. R31-R45.
[15] D. Marquardt, 1963, "An algorithm for least squares estimation of nonlinear parameters," SIAM Journal of Applied mathematics, vol. 11, pp. 431-441.
[16] E. B. Division, 2010, "Specification of Product for Lithium-ion Rechargeable Cell- Model : ICR18650-30B," L. Samsung SDI Co. ,first edition.