شبیه‌سازی عددی و مطالعه نظری تأثیر پارامترهای عملیاتی در تقطیر غشایی در خلأ

نوع مقاله: مقاله شیمی

نویسندگان

آزمایشگاه پژوهشس فرآیندهای جداسازی- SPRG

چکیده

خلیج فارس و مناطق ساحلی آن بزرگترین منبع نفت خام در جهان محسوب می‌شوند. از طرفی، گرمای هدر رفته از صنایع پالایش و پتروشیمی که در محدوده اطراف خلیج‌فارس قرار گرفته‌اند، می‌تواند براساس شرایط ساده خوراک ورودی در تقطیر غشایی، مورد استفاده قرار بگیرد. از این رو، به منظور بهبود عملکرد این سیستم در نمک‌زدایی از آب خلیج فارس و افزایش شار خروجی، مدل انتقال جرم و حرارت به طور همزمان در یک سیستم تقطیر غشایی در خلآ ارائه و با داده های تجربی اعتبارسنجی شده است. تأثیر شرایط عملیاتی مختلف نظیر دمای خوراک، فشار خلأ در سمت تراویده، غلظت خوراک و ضریب انتقال حرارت بر شار تراوش‌شده مورد بررسی قرار گرفته است. همچنین، اثر دمای خوراک بر پدیده قطبش دمایی مطالعه شده است. نتایج نشان دادند که شار تراوش‌شده با افزایش دمای خوراک و ضریب انتقال حرارت افزایش و با افزایش فشار خلأ و غلظت خوراک کاهش پیدا می‌کند. همچنین مشخص شد که افزایش دما اثر نامطلوب پدیده قطبش دمایی را افزایش خواهد داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical simulation and theoretical study on effects of operating parameters in Persian Gulf desalination using vacuum membrane distillation

نویسندگان [English]

  • Morteza Asghari
  • Shirin Gh. Lovineh
  • Mojtaba Raji
چکیده [English]

The Persian Gulf and its coastal areas are considered to be the largest source of crude oil in the world. On the other hand, the waste heat from the refining and petrochemical industries located around the Persian Gulf region can be used based on simple feed conditions for membrane distillation. Therefore, in order to improve the performance of this system in the desalination of Persian Gulf water and increase the flux of output, the mass and heat transfer model is simultaneously introduced into a membrane distillation system and validated with experimental data. The effect of different operating conditions such as feed temperature, vacuum pressure on the permeate side, feed concentration and heat transfer coefficient on the flux permeated have been investigated. Also, the effect of feed temperature on the temperature polarization phenomenon has been studied. The results showed that permeate flux increased with increasing feed temperature and heat transfer coefficient and decreased with increasing vacuum pressure and feed concentration. It was also found that the temperature increase would have an adverse effect on the phenomenon of temperature polarization.

کلیدواژه‌ها [English]

  • Vacuum membrane distillation
  • Numerical simulation
  • Mass transfer
  • Permeate Flux
  • Temperature polarization

 

[1]        Bélafi-Bakó K.,Koroknai B., (2006). Enhanced water flux in fruit juice concentration: Coupled operation of osmotic evaporation and membrane distillation. J Memb sci,  269, p. 187-93.

[2]        Calabro V., Jiao B.L.,Drioli E., (1994). Theoretical and experimental study on membrane distillation in the concentration of orange juice. Ind eng chem res,  33, p. 1803-8.

[3]        Hasanoğlu A., Rebolledo F., Plaza A., et al., (2012). Effect of the operating variables on the extraction and recovery of aroma compounds in an osmotic distillation process coupled to a vacuum membrane distillation system. J food eng,  111, p. 632-41.

[4]        Kimura S., Nakao S.-I.,Shimatani S.-I., (1987). Transport phenomena in membrane distillation. J Memb sci,  33, p. 285-98.

[5]        Bagger-Jørgensen R., Meyer A.S., Varming C., et al., (2004). Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation. J Food Eng,  64, p. 23-31.

[6]        Banat F.A.,Simandl J., (1996). Removal of benzene traces from contaminated water by vacuum membrane distillation. Chem Eng Sci,  51, p. 1257-65.

[7]        Couffin N., Cabassud C.,Lahoussine-Turcaud V., (1998). A new process to remove halogenated VOCs for drinking water production: vacuum membrane distillation. Desalination,  117, p. 233-45.

[8]        Urtiaga A., Gorri E., Ruiz G., et al., (2001). Parallelism and differences of pervaporation and vacuum membrane distillation in the removal of VOCs from aqueous streams. Sep Purif Technol,  22, p. 327-37.

[9]        Wu B., Tan X., Li K., et al., (2006). Removal of 1, 1, 1-trichloroethane from water using a polyvinylidene fluoride hollow fiber membrane module: Vacuum membrane distillation operation. Sep Purif Technol,  52, p. 301-9.

[10]      Calabro V., Drioli E.,Matera F., (1991). Membrane distillation in the textile wastewater treatment. Desalination,  83, p. 209-24.

[11]      Wu Y., Kong Y., Liu J., et al., (1991). An experimental study on membrane distillation-crystallization for treating waste water in taurine production. Desalination,  80, p. 235-42.

[12]      Banat F.A.,Simandl J., (1999). Membrane distillation for dilute ethanol: separation from aqueous streams. J Memb sci,  163, p. 333-48.

[13]      Gryta M., (2001). The fermentation process integrated with membrane distillation. Sep Purif Technol,  24, p. 283-96.

[14]      Izquierdo-Gil M.,Jonsson G., (2003). Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). J Memb sci,  214, p. 113-30.

[15]      Khayet M., (2008). Membrane distillation. Advanced membrane technology and applications, p. 297-369.

[16]      Baker R.W., (2004). Overview of membrane science and technology. Membrane Technology and Applications, Second Edition, p. 1-14.

[17]      Banat F.A., Al-Rub F.A.,Shannag M., (1999). Modeling of dilute ethanol–water mixture separation by membrane distillation. Sep Purif Technol,  16, p. 119-31.

[18]      Franken A., Nolten J., Mulder M., et al., (1987). Wetting criteria for the applicability of membrane distillation. J Memb sci,  33, p. 315-28.

[19]      Lewandowicz G., Białas W., Marczewski B., et al., (2011). Application of membrane distillation for ethanol recovery during fuel ethanol production. J Memb sci,  375, p. 212-9.

[20]      Zakrzewska-Trznadel G., Harasimowicz M.,Chmielewski A.G., (1999). Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation. J Memb sci,  163, p. 257-64.

[21]      Drioli E.,Wu Y., (1985). Membrane distillation: an experimental study. Desalination,  53, p. 339-46.

[22]      Wang P.,Chung T.-S., (2015). Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Memb sci,  474, p. 39-56.

[23]      Drioli E., Ali A.,Macedonio F., (2015). Membrane distillation: recent developments and perspectives. Desalination,  356, p. 56-84.

[24]      Khalifa A., Ahmad H., Antar M., et al., (2017). Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination,  404, p. 22-34.

[25]      Boo C., Lee J.,Elimelech M., (2016). Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications. Env sci technol,  50, p. 8112-9.

[26]      Abu-Zeid M.A.E.-R., Zhang Y., Dong H., et al., (2015). A comprehensive review of vacuum membrane distillation technique. Desalination,  356, p. 1-14.

[27]      Dullien F.A., (2012). Porous media: fluid transport and pore structure, Academic press.

[28]      Alkhudhiri A., Darwish N.,Hilal N., (2012). Membrane distillation: a comprehensive review. Desalination,  287, p. 2-18.

[29]      Iversen S., Bhatia V., Dam-Johansen K., et al., (1997). Characterization of microporous membranes for use in membrane contactors. J Memb sci,  130, p. 205-17.

[30]      Skinner L.,Sambles J., (1972). The Kelvin equation—a review. J Aerosol Sci,  3, p. 199-210.

[31]      Kielland J., (1937). Individual activity coefficients of ions in aqueous solutions. J American Chem Society,  59, p. 1675-8.

[32]      Lawson K.W.,Lloyd D.R., (1997). Membrane distillation. J Memb sci,  124, p. 1-25.

[33]      Chiam C.-K.,Sarbatly R., (2013). Vacuum membrane distillation processes for aqueous solution treatment—A review. Chem Eng Processing: Process Intensification,  74, p. 27-54.

[34]      Bandini S., Saavedra A.,Sarti G.C., (1997). Vacuum membrane distillation: experiments and modeling. AIChE J,  43, p. 398-408.

[35]      Mericq J.-P., Laborie S.,Cabassud C., (2010). Vacuum membrane distillation of seawater reverse osmosis brines. Water Res,  44, p. 5260-73.

[36]      Curcio E.,Drioli E., (2005). Membrane distillation and related operations—a review. Sep Purif Rev,  34, p. 35-86.

[37]      Brandup J.,Immergut E., Polymer handbook 3rd edn. 1989, Wiley, New York.

[38]      Mengual J., Khayet M.,Godino M., (2004). Heat and mass transfer in vacuum membrane distillation. International Journal of Heat and Mass Transfer,  47, p. 865-75.