مدل سازی سه بعدی عملکرد پیل سوختی غشای تبادل پروتون با هدف کاهش اتلاف هیدروژن

نوع مقاله: مقاله شیمی

نویسندگان

دانشگاه یاسوج

چکیده

در پژوهش حاضر، مدل سازی عددی پیل سوختی با الگوی جریان همسو و ناهمسو، به منظور بررسی میزان تأثیر متغیرهای عملیاتی بر عملکرد آن مورد توجه قرار گرفته است. در مدل در نظر گرفته شده، معادله های پیوستگی، اندازه حرکت، انتقال جرم، سرعت واکنش های الکتروشیمیایی و بار الکتریکی در طول کانال پیل سوختی پلیمری در سه بعد نوشته شده و به صورت همزمان با استفاده از روش عددی عنصر محدود حل شده اند. نتایج حاصل از مدل با داده های آزمایشگاهی ارائه شده در منابع پیشین تعیین اعتبار شدند. درمدل حل شده، تاثیر متغیرهایی همانند دما، فشار و طول کانال بر چگالی جریان الکتریکی الکترودها، میزان مصرف هیدروژن و اتلاف آن مورد بررسی قرار گرفته است. نتایج به دست آمده نشان می‌دهند که با افزایش دما از 60 به °C90 تحت شرایط ولتاژ ثابت، چگالی جریان کانال پیل سوختی پلیمری به میزان %19/4 افزایش می یابد. همچنین، با افزایش فشار از 1 به atm 5 در ولتاژ ثابت، چگالی جریان %26/9 افزایش پیدا می کند. علاوه بر آن، میزان مصرف هیدروژن در طول کانال با کاهش ولتاژ افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A three-dimensional model for evaluating the performance of proton exchange membrane fuel cell to reduce the waste of hydrogen

نویسنده [English]

  • Parviz Darvishi
Faculty of Chemical Engineering
چکیده [English]

In the present study, a numerical model has been utilized to investigate the effects of operating parameters on the performance of a proton exchange membrane fuel cell in co-current and countercurrent patterns. The model considers the three-dimensional governing equations involve continuity, momentum, mass, electrode kinetics and potential fields across the channel of fuel cell. The coupled equations of the proposed model are then solved using the finite element method. The simulation results were validated with previous reported experimental data. In the results obtained from the model, the effect of variables such as temperature, pressure and length of channel on the current density of electrodes and the amount of waste hydrogen have been studied. It was found that at constant voltage, increasing the temperature from 60 to 90°C, raises the current density by 19.4%. At similar conditions, an increase in pressure from 1 to 5 atm, improves the fuel cell current density by 26.9%. In addition, with voltage drop across the channel, hydrogen consumption increases.

کلیدواژه‌ها [English]

  • Proton exchange membrane fuel cell
  • modeling
  • Current density
  • Hydrogen waste
 
[1]      R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, et al., A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrogen Energy. 42 (2017) 9293–9314.
[2]      M.R. Arasti, N. Bagheri Moghaddam, Use of technology mapping in identification of fuel cell sub-technologies, Int. J. Hydrogen Energy. 35 (2010) 9516–9525. doi:http://dx.doi.org/10.1016/j.ijhydene.2010.05.071.
[3]      M.R. Ashraf Khorasani, S. Asghari, A. Mokmeli, M.H. Shahsamandi, B. Faghih Imani, A diagnosis method for identification of the defected cell(s) in the PEM fuel cells, Int. J. Hydrogen Energy. 35 (2010) 9269–9275. doi:http://dx.doi.org/10.1016/j.ijhydene.2010.04.157.
[4]      W.R.W. Daud, R.E. Rosli, E.H. Majlan, S.A.A. Hamid, R. Mohamed, PEM fuel cell system control: A review, Renew. Energy. (2017).
[5]      V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources. 114 (2003) 32–53.
[6]      V. Das, S. Padmanaban, K. Venkitusamy, R. Selvamuthukumaran, F. Blaabjerg, P. Siano, Recent advances and challenges of fuel cell based power system architectures and control–A review, Renew. Sustain. Energy Rev. 73 (2017) 10–18.
[7]      A. Kraytsberg, Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy & Fuels. 28 (2014) 7303–7330.
[8]      C.-Y. Jung, H.-S. Shim, S.-M. Koo, S.-H. Lee, S.-C. Yi, Investigations of the temperature distribution in proton exchange membrane fuel cells, Appl. Energy. 93 (2012) 733–741. doi:http://dx.doi.org/10.1016/j.apenergy.2011.08.035.
[9]      M.S. Ismail, K.J. Hughes, D.B. Ingham, L. Ma, M. Pourkashanian, Effects of anisotropic permeability and electrical conductivity of gas diffusion layers on the performance of proton exchange membrane fuel cells, Appl. Energy. 95 (2012) 50–63. doi:http://dx.doi.org/10.1016/j.apenergy.2012.02.003.
[10]    J.-H. Jang, W.-M. Yan, C.-C. Shih, Numerical study of reactant gas transport phenomena and cell performance of proton exchange membrane fuel cells, J. Power Sources. 156 (2006) 244–252. doi:http://dx.doi.org/10.1016/j.jpowsour.2005.06.029.
[11]    B. ZareNezhad, M.M. Sabzemeidani, Predicting the effect of cell geometry and fluid velocity on pem fuel cell performance by CFD simulation, J. Chem. Technol. Metall. 50 (2015) 176–182.
[12]    E. Hontañón, M.J. Escudero, C. Bautista, P.L. Garcı́a-Ybarra, L. Daza, Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques, J. Power Sources. 86 (2000) 363–368. doi:http://dx.doi.org/10.1016/S0378-7753(99)00478-4.
[13]    F. Barbir, Chapter 7 - 7. Fuel Cell Modeling, in: F.B.T.-P.E.M.F.C. Barbir (Ed.), Academic Press, Burlington, 2005: pp. 207–248. doi:http://dx.doi.org/10.1016/B978-012078142-3/50008-2.
[14]    V. Gurau, H. Liu, S. Kakaç, Two-dimensional model for proton exchange membrane fuel cells, AIChE J. 44 (1998) 2410–2422. doi:10.1002/aic.690441109.
[15]    X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, J. Power Sources. 165 (2007) 739–756.
[16]    R.F. Mann, J.C. Amphlett, M.A.I. Hooper, H.M. Jensen, B.A. Peppley, P.R. Roberge, Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, J. Power Sources. 86 (2000) 173–180.
[17]    S. Litster, G. McLean, PEM fuel cell electrodes, J. Power Sources. 130 (2004) 61–76.
[18]    J.E. Dawes, N.S. Hanspal, O.A. Family, A. Turan, Three-dimensional CFD modelling of PEM fuel cells: An investigation into the effects of water flooding, Chem. Eng. Sci. 64 (2009) 2781–2794. doi:http://dx.doi.org/10.1016/j.ces.2009.01.060.
[19]    T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. . 138 (1991) 2334–2342. doi:10.1149/1.2085971.
[20]    T. V Nguyen, R.E. White, A Water and Heat Management Model for Proton‐Exchange‐Membrane Fuel Cells, J. Electrochem. Soc. . 140 (1993) 2178–2186. doi:10.1149/1.2220792.
[21]    S. Dutta, S. Shimpalee, J.W. Van Zee, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, Int. J. Heat Mass Transf. 44 (2001) 2029–2042.
[22]    P. Futerko, I.-M. Hsing, Two-dimensional finite-element method study of the resistance of membranes in polymer electrolyte fuel cells, Electrochim. Acta. 45 (2000) 1741–1751. doi:http://dx.doi.org/10.1016/S0013-4686(99)00394-1.
[23]    A. Kumar, R.G. Reddy, Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells, J. Power Sources. 113 (2003) 11–18. doi:http://dx.doi.org/10.1016/S0378-7753(02)00475-5.
[24]    B.R. Sivertsen, N. Djilali, CFD-based modelling of proton exchange membrane fuel cells, J. Power Sources. 141 (2005) 65–78. doi:http://dx.doi.org/10.1016/j.jpowsour.2004.08.054.
[25]    L. Wang, A. Husar, T. Zhou, H. Liu, A parametric study of {PEM} fuel cell performances, Int. J. Hydrogen Energy. 28 (2003) 1263–1272. doi:http://dx.doi.org/10.1016/S0360-3199(02)00284-7.
[26]    F. Hashemi, S. Rowshanzamir, M. Rezakazemi, CFD simulation of PEM fuel cell performance: Effect of straight and serpentine flow fields, Math. Comput. Model. 55 (2012) 1540–1557. doi:http://dx.doi.org/10.1016/j.mcm.2011.10.047.
[27]    A. Iranzo, M. Muñoz, F. Rosa, J. Pino, Numerical model for the performance prediction of a PEM fuel cell. Model results and experimental validation, Int. J. Hydrogen Energy. 35 (2010) 11533–11550. doi:http://dx.doi.org/10.1016/j.ijhydene.2010.04.129.
[28]    A. Iranzo, P. Boillat, F. Rosa, Validation of a three dimensional PEM fuel cell CFD model using local liquid water distributions measured with neutron imaging, Int. J. Hydrogen Energy. 39 (2014) 7089–7099. doi:http://dx.doi.org/10.1016/j.ijhydene.2014.02.115.
[29]    W.E.S. R. B. Bird  and E. N. Lightfoot, John Wiley and Sons, Inc., Transport phenomena,  New York (1960). 780 pages. $11.50, AIChE J. 7 (1961) 5J–6J. doi:10.1002/aic.690070245.
[30]    R. O’Hayre, S.-W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, 2nd ed., 2009.
[31]    P.T. Nguyen, T. Berning, N. Djilali, Computational model of a PEM fuel cell with serpentine gas flow channels, J. Power Sources. 130 (2004) 149–157. doi:http://dx.doi.org/10.1016/j.jpowsour.2003.12.027.
[32]    F. Barbir, PEM fuel cells: theory and practice, Academic Press, 2012.
[33]    N.P. Siegel, M.W. Ellis, D.J. Nelson, M.R. von Spakovsky, A two-dimensional computational model of a PEMFC with liquid water transport, J. Power Sources. 128 (2004) 173–184. doi:http://dx.doi.org/10.1016/j.jpowsour.2003.09.072.
[34]    R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, PEM fuel cell electrocatalyst durability measurements, J. Power Sources. 163 (2006) 76–81.