شبیه‌سازی و پیاده‌سازی وظایف دوری از موانع و همگام‌سازی با استفاده از تئوری کنترل سوپروایزری احتمالی و زمان‌دار در رباتیک جمعی

نوع مقاله: مقاله کامپیوتر

نویسندگان

دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

به دلیل دشواری پیاده‌سازی صوری سیستم‌های مبتنی بر رباتیک جمعی، نرم‌افزارهای کنترلی این سیستم‌ها اغلب با آزمون و خطا و به صورت تک منظوره طراحی می‌شوند. بنابراین، طراحی صورت گرفته به سادگی قابلیت استفاده مجدد برای سایر مسائل را ندارد. از طرفی، آزمون، آنالیز و تصدیق وجود ویژگی‌های مورد نیاز در مسئله به دشواری صورت می‌گیرد. علاوه‌براین، به دلیل تولید دستی کد، نمی‌توان تطبیق طراحی اولیه و کد پیاده‌سازی شده را تضمین کرد. برای غلبه بر این چالش‌ها، استفاده از تئوری کنترل سوپروایزری پیشنهاد می‌شود. در این مقاله، تئوری کنترل سوپروایزری احتمالی و زمان‌دار ptSCT بر روی سکوی نوظهور آرگوس (ARGoS) و در بستر رباتیک جمعی پیاده‌سازی شده است. روش پیشنهادی، پس از محاسبه سوپروایزر احتمالی و زمان‌دار، کد کنترلی موردنیاز را به صورت خودکار تولید می‌کند؛ این کد بدون هیچ تغییری قابل استفاده برای شبیه‌سازی و یا اجرای بر روی ربات‌های واقعی است. برای نمایش قابلیت‌های روش پیشنهادی، دو وظیفه پرکاربرد دوری از موانع (Obstacle Avoidance) و همگام‌سازی (Synchronization) با تکیه بر طراحی احتمالی و زمان‌دار، پیاده‌سازی و شبیه‌سازی شده‌اند سپس مزایای طراحی با ptSCT نسبت به SCT مورد اشاره قرار گرفته است. نتایج آزمایش‌های صورت گرفته نشان از عملکرد بسیار مناسب روش پیشنهادی از نظر سادگی و صحت طراحی، قابلیت استفاده مجدد و تولید خودکار کد دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation and Implementation of Obstacle Avoidance and Synchronization Tasks using Probabilistic and Timed Supervisory Control Theory in Swarm Robotics

نویسندگان [English]

  • Faezeh Mirzaei
  • Ali Akbar Pouyan
  • Saeedeh Ferdosi
Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Due to difficulties in formal implementation of swarm robotic systems, controlling software of such systems is developed in an ad-hoc manner and with trial and error. So, it is hard to reuse these systems for other similar problems. Moreover, testing, analyzing and verifying the correctness of the controller are difficult too. There is no guarantee that the implementation matches the specifications. To address these problems, supervisory control theory as a formal approach is suggested. In this paper, probabilistic and timed supervisory control theory (ptSCT) is implemented on ARGoS platform in swarm robotic. The proposed approach automatically calculates ptSCT, and then generates the equivalent controlling software codes. The generated controlling software can be used for both simulation and running on real robots without any changes. For comparison purposes, two tasks namely obstacle avoidance and synchronization of robots are designed using both SCT and proposed ptSCT. The approach is successfully validated in both tasks using up to 64 E-Puck robots. The experimental results show the advantages of the ptSCT, in terms of simplicity, reusability, and automatic code generation.

کلیدواژه‌ها [English]

  • Swarm Robotics
  • Probabilistic and Timed Supervisory Control Theory
  • Obstacle Avoidance Task
  • Synchronization Task
  • ARGoS Platform
 

[1]          Şahin, E. (2004). “Swarm Robotics: From Sources of Inspiration to Domains of Application.”, International workshop on swarm robotics, pp. 10–20, Springer, Berlin, Heidelberg.

[2]          Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M. (2013). “Swarm Robotics : A Review from the Swarm Engineering Perspective.”, Swarm Intelligence., vol. 7, no. 1, pp. 1–41.

[3]          Prasad, S., Rawool, S. (2016). “Swarm Robotics : Nature Inspired Systems.”, International Journal of Engineering Research and General Science., vol. 4, no. 5, pp. 168–174.

[4]          Dorigo, M., Roosevelt, A.F.. (2014). “Swarm Robotics.”, Autonomous Robots., no. Special Issue.

]5[       میرزائی، ف.، پویان، ع.ا. (1396). “مروری بر رباتیک جمعی و جایگاه آن در سیستم های چندرباته”، نشریه مهندسی برق و الکترونیک ایران، پذیرفته شده، ص. 1-20.

]6[       نیکوبین، ا.، قدوسیان, ع.، وزواری، م.ر. (1396). “طراحی مسیر بهینه برای ربات کابلی معلق بوسیله میانیاب چندجمله ای درجه چهار و الگوریتم مثلث بهینه گر”، مدل سازی در مهندسی، سال 15، شماره 48، ص. 31-44.

]7[       موسویان، س.ا.، حسینی، س. (1392). “طراحی پایدارترین حرکت ربات متحرک در مسیر مشخص”، مدل سازی در مهندسی، سال 11، شماره 33، ص. 1-14.

]8[       فومنی، م.س.، خطیبی، م.م.، مرادی، م.، آبادی، م.ک.م. (1388). “تحلیل سینماتیکی-سینتیکی پیمایش مستقیم الخط ربات انسان نما”، مدل سازی در مهندسی، سال 8، شماره 17، ص. 17-25.

[9]          Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R. (2016). “Supervisory Control Theory Applied to Swarm Robotics.”, Swarm Intelligence., vol. 10, no. 1, pp. 65–97.

[10]        Knight, J.C., DeJong, C.L., Gibble, M.S., Nakano, L.G. (1997). “Why Are Formal Methods Not Used More Widely?”, Fourth NASA formal methods workshop, pp. 1–12, NASA.

[11]        Brambilla, M., Dorigo, M., Birattari, M. (2015). “Property-Driven Design for Robot Swarms : A Design Method Based on Prescriptive Modeling and Model Checking.”, ACM Transactions on Autonomous and Adaptive Systems., vol. 9, no. 4, pp. 17.

[12]        Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M. (2014). “AutoMoDe: A Novel Approach to the Automatic Design of Control Software for Robot Swarms.”, Swarm Intelligence., vol. 8, no. 2, pp. 89–112.

[13]        King, J., Pretty, R.K., Gosine, R.G. (2003). “Coordinated Execution of Tasks in a Multiagent Environment.”, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans., vol. 33, no. 5, pp. 615–619.

[14]        Winfield, A.F., Sa, J., Fernández-Gago, M.-C., Dixon, C., Fisher, M. (2005). “On Formal Specification of Emergent Behaviours in Swarm Robotic Systems.”, International journal of advanced robotic systems., vol. 2, no. 4, pp. 39.

[15]        Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R. (2016). “Probabilistic Supervisory Control Theory (pSCT) Applied to Swarm Robotics.”, Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 1395–1403.

[16]        Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M. (2012). “ARGoS: A Modular, Parallel, Multi-Engine Simulator for Multi-Robot Systems.”, Swarm Intelligence., vol. 6, no. 4, pp. 271–295.

]17[     میرزائی، ف.، پویان، ع.ا.، فردوسی, س. (1396). “پیاده‌سازی و شبیه‌سازی استراتژی تجمع ربات‌ها با استفاده از تئوری کنترل سوپروایزری در رباتیک جمعی”، سومین کنفرانس پردازش سیگنال و سیستم های هوشمند، ص. 5-13، دانشگاه صنعتی شاهرود.

[18]        Brandin, B. a, Wonham, W.M. (1994). “The Supervisory Control of Timed DES.”, IEEE Transactions on Automatic Control., vol. 39, no. 2, pp. 329–342.

[19]        Cassandras, C.G., Lafortune, S. (2009). Introduction to discrete event systems., Springer Science & Business Media.

[20]        Ramadge, P.J., Wonham, W.M. (1987). “Supervisory Control of a Class of Discrete Event Processes.”, SIAM journal on control and optimization., vol. 25, no. 1, pp. 206–230.

[21]        Rezaee, H., Abdollahi, F. (2014). “A Decentralized Cooperative Control Scheme with Obstacle Avoidance for a Team of Mobile Robots.”, IEEE Transactions on Industrial Electronics., vol. 61, no. 1, pp. 347–354.

[22]        Souhila, K., Karim, A. (2007). “Optical Flow Based Robot Obstacle Avoidance.”, International Journal of Advanced Robotic Systems., vol. 4, no. 1, pp. 2.

[23]        Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Zufferey, J., Floreano, D., Martinoli, A. (2009). “The E-Puck, a Robot Designed for Education in Engineering.”, Proceedings of the 9th conference on autonomous robot systems and competitions, pp. 59–65.

[24]        Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R. (2014). “Self-Organized Aggregation without Computation.”, The International Journal of Robotics Research., vol. 33, no. 8, pp. 1145–1161.

[25]        Ampatzis, C., Tuci, E., Trianni, V., Christensen, A.L., Dorigo, M. (2009). “Evolving Self-Assembly in Autonomous Homogeneous Robots: Experiments with Two Physical Robots.”, Artificial Life., vol. 15, no. 4, pp. 465–484.

[26]        Bassler, B.L. (1999). “How Bacteria Talk to Each Other: Regulation of Gene Expression by Quorum Sensing.”, Current opinion in microbiology, vol. 2, no. 6, pp. 582–587.

[27]        Jakobi, N., Husbands, P., Harvey, I. (1995). “Noise and the Reality Gab: The Use of Simulation in Evolutionary Robotics.”, European Conference on Artificial Life, pp. 704–720.

[28]        Koos, S., Mouret, J., Doncieux, S. (2012). “The Transferability Approach : Crossing the Reality Gap in Evolutionary Robotics To Cite This Version : The Transferability Approach : Crossing the Reality Gap in Evolutionary Robotics.”, IEEE Transactions on Evolutionary Computation., vol. 17, no. 1, pp. 122–145.