روش بهبود یافته تحلیل همبستگی متعارف برای بازشناسی فرکانس پتانسیل برانگیخته بینایی حالت ماندگار

نوع مقاله : مقاله برق

نویسندگان

گروه مهندسی پزشکی، دانشگاه سمنان، سمنان، ایران

چکیده

روش تحلیل همبستگی متعارف (CCA)، یکی از پرکاربردترین روش‌های بازشناسی فرکانس در سیستم‌های واسط مغز-کامپیوتر مبتنی بر پتانسیل برانگیخته بینایی حالت ماندگار (SSVEP) است. اگرچه روش CCA در اغلب موارد با نتایج خوبی همراه است، اما اگر میان فرکانس‌های تحریک رابطه هارمونیک برقرار باشد، این روش با چالش مواجه خواهد شد. در این مقاله، روش CCA بهبود یافته پیشنهاد شده است که با اضافه نمودن یک مرحله‌ی پس‌پردازش در روش CCA، این چالش را تا حدودی رفع می‌نماید. بدین منظور، تحریک بینایی در محدوده 6 تا 16 با گام فرکانسی 5/0 هرتز با استفاده از جعبه‌ابزار psychophysics متلب ایجاد گردید. ثبت سیگنال SSVEP از ده سوژه و تنها از الکترود Oz انجام شد. طبق روش پیشنهادی، پس از اعمال CCA و تعیین فرکانس متناظر با بیشینه همبستگی، اختلاف میزان همبستگی حاصل از این فرکانس و همبستگی حاصل از هارمونیک متناظر، محاسبه می‌گردد. سپس با مقایسه مقدار بدست آمده با مقدار آستانه، بازشناسی فرکانس صورت می‌پذیرد. مقدار آستانه بر اساس داده‌های هر سوژه به‌صورت آفلاین تعیین می‌شود. میانگین صحت بازشناسی روش CCA استاندارد با انتخاب دو هارمونیک در ایجاد سیگنال مرجع(2=N)، به‌ازای پنجره زمانی هشت ثانیه‌، %74 بوده که با روش پیشنهادی به %81 رسید. به طور متناظر، به‌ازای پنجره زمانی چهار ثانیه‌ نیز صحت از %78 به %83 افزایش یافت. روش پیشنهادی با کاهش خطای بازشناسی هارمونیک توانسته است برای گستره وسیع فرکانسی، صحت بازشناسی را نسبت به روش CCA استاندارد بهبود بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A modified Canonical Correlation Analysis Method for SSVEP Frequency Recognition

نویسندگان [English]

  • Sahar Sadeghi
  • Ali Maleki
Biomedical Engineering Department, Semnan University, Semnan, Iran
چکیده [English]

The canonical correlation analysis (CCA) is one of the most widely used frequency recognition methods in steady-state visual evoked potential (SSVEP)-based brain computer interface systems. Although the CCA is often associated with good results, but if stimulation frequencies have harmonic relation, this issue will challenge this method. In this paper, the modified CCA method has been proposed that can solve this problem by adding a post-processing step in the standard CCA. For this purpose, visual stimulus ranged from 6-16 Hz with an interval of 0.5 have been generated using Matlab and the psychophysics toolbox. The SSVEP signal was recorded from ten subjects via one electrode placed at Oz. According to the proposed method, after applying CCA and determining the frequency corresponding to the maximum correlation, the difference between the correlation associated to this frequency and the correlation of the corresponding harmonic frequency is calculated. Then, the frequency is recognized by comparing the obtained value with the threshold. The threshold is determined based on the data of each subject during the offline analysis. For eight-second time window, the average recognition accuracy of the standard CCA with choosing two harmonics in constructing the reference signal (N=2) was 74%, while the corresponding value of the proposed method was 81%. Correspondingly, the accuracy was increased from 78% to 83% for four-second time window. For wide frequency range, the proposed method has been able to improve the frequency recognition accuracy compared with the standard CCA, by reducing harmonic recognition error.

کلیدواژه‌ها [English]

  • Brain-computer Interface
  • Steady-state Visual Evoked Potential
  • Canonical Correlation Analysis
 
[1] بامداد، م.،زرشناس، ه. (1395) "طراحی دستگاه توانبخشی آرنج بر پایه محرک کابل". مجله مدلسازی در مهندسی، سال چهاردهم، شماره 45، صفحات 49 تا 61.
[2] سعادت فومنی، م.،خطیبی، م.م.، مرادی، م.، کارآموز مهدی آبادی، م. (1388) "تحلیل سینماتیکی- سینتیکی پیمایش مستقیم‌الخط ربات انسان نما". مجله مدلسازی در مهندسی، سال هفتم، شماره 17، صفحات 17 تا 25.
 [3]    Pfurtscheller, G., et al. (2010). Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based “brain switch” a feasibility study towards a hybrid BCI. IEEE Transaction on Neural Systems and Rehabilitation Engineering, vol. 18(4), pp. 409-414.
[4]  Yin, E., et al. (2014). A speedy hybrid BCI spelling approach combining P300 and SSVEP. IEEE Transactions on Biomedical Engineering, vol. 61(2), pp. 473-483.
[5]   Movahedi, M. M., Mehdizadeh, A. R., & Alipour, A. (2013). Development of a brain computer interface (BCI) speller system based on ssvep signals. Journal of Biomedical Physics and Engineering.
[6]   Oikonomou, V. P., Liaros, G., Georgiadis, K., Chatzilari, E., Adam, K., Nikolopoulos, S., & Kompatsiaris, I. (2016). Comparative evaluation of state-of-the-art algorithms for SSVEP-based BCIs. arXiv:1602.00904.
[7]  Waytowich, N. R., & Krusienski, D. J. (2016). Multiclass Steady-State Visual Evoked Potential Frequency Evaluation Using Chirp-Modulated Stimuli. IEEE Transactions on Human-Machine Systems, vol. 46(4), pp.593-600.
[8]  Hwang, H. J., Kim, D. H., Han, C. H., & Im, C. H. (2013). A new dual-frequency stimulation method to increase the number of visual stimuli for multi-class SSVEP-based brain–computer interface (BCI). Brain Research, vol. 1515, pp. 66-77.
[9]  Cui, J., Wong, W., & Mann, S. (2004). Time-frequency analysis of visual evoked potentials by means of matching pursuit with chirplet atoms. 26th Annual International Conference of the IEEE in Engineering in Medicine and Biology Society (IEMBS'04), Vol. 1, pp. 267-270.
[10] Wong, C. M., Wang, B., Wan, F., Mak, P. U., Mak, P. I., & Vai, M. I. (2011). A solution to harmonic frequency problem: frequency and phase coding-based brain-computer interface. The 2011 International Joint Conference on in Neural Networks (IJCNN), pp. 2119-2126.
[11] Castillo-Garcia, J., Müller, S., Caicedo, E., Cotrina, A., & Bastos, T. (2014). Comparison among feature extraction techniques based on power spectrum for a SSVEP-BCI. 12th IEEE International Conference on Industrial Informatics (INDIN), pp. 284-288.
[12] Wang, R., Wu, W., Iramina, K., & Ge, S. (2014). The combination of CCA and PSDA detection methods in a SSVEP-BCI system. IEEE 11th World Congress on Intelligent Control and Automation (WCICA), pp. 2424-2427.
[13] Zhang, Y. U., Zhou, G., Jin, J., Wang, X., & Cichocki, A. (2014). Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis. International Journal of Neural Systems, vol. 24, no. 04, pp.1450013.
[14] Zhang, Y., Zhou, G., Zhao, Q., Onishi, A., Jin, J., Wang, X., & Cichocki, A. (2011). Multiway canonical correlation analysis for frequency components recognition in SSVEP-based BCIs. In Neural Information Processing, pp. 287-295.
[15] آهنین جان، ف.، مالکی، ع.، (1395)، توسعه یک سیستم واسط مغز-کامپیوتر مبتنی بر پتانسیل برانگیخته بینایی حالت ماندگار برای تایپ متون فارسی، مجله دانشکده پزشکی اصفهان، سال 34 ام، شماره 393، صفحه 914-918.
[16] Tello, R. M., Muller, S. M., Bastos-Filho, T., & Ferreira, A. (2014). A comparison of techniques and technologies for SSVEP classification. 5th ISSNIP-IEEE Conference in Biosignals and Robotics for Better and Safer Living (BRC), pp. 1-6.
[17] Bin, G., Gao, X., Yan, Z., Hong, B., & Gao, S. (2009). An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. Journal of Neural Engineering, vol. 6(4), pp. 046002.
[18] Castillo, J., Muller, S., Caicedo, E., & Bastos, T. (2014). Feature extraction techniques based on power spectrum for a SSVEP-BCI. IEEE 23rd International Symposium in Industrial Electronics (ISIE), pp. 1051-1055.
[19] حافظی مطلق، ن.،خلیل‌زاده، م.ع، مقیمی، ع. (1394) "مدلسازیآمیختگیسیگنال EEG وتداخلچشمیدرفضایهادیحجمیسر". مجله مدلسازی در مهندسی، سال سیزدهم، شماره 40، صفحات 115 تا 128.