مدل سازی عددی نشست پی‌های رادیه-مرکب منفصل با تاکید بر تعریف جدیدی از این سیستم‌ها با عنوان سیستم ترکیبی

نوع مقاله : مقاله عمران

نویسندگان

1 گروه مهندسی عمران دانشگاه ملایر ملایر استان همدان ایران

2 گروه مهندسی عمران دانشگاه ملایر ملایر ایران

چکیده

بیشترین کاربرد پی‌های گسترده به همراه شمع زمانی است که رادیه به تنهایی می‌تواند مقاومت کافی در برابر بار‌های وارده را تأمین کند ولی برای اجتناب از نشست‌های زیاد سیستم فونداسیون یا جلوگیری از شکل‌گیری نشست‌های غیریکنواخت از گروه شمع در زیر آن استفاده می‌شود. در این مطالعه، تغییر شکل پی، اعم از نشست‌های حداکثر، متوسط و غیریکنواخت پی در سیستم مرکب رادیه- شمع تحت بارگذاری استاتیکی در خاک ماسه‌ای یکنواخت، با استفاده از مدل‌سازی اجزای محدود برای چیدمان‌های گوناگون شمع‌ها و سیستم‌های مختلف پی- شمع از نظر اتصال پی و شمع‌ها، بررسی شده و مورد تجزیه و تحلیل قرار گرفته است. همچنین نرم‌افزار اجزای محدود پلکسیز سه بعدی فونداسیون (Plaxis
, v.1.6,3D foundation)برای مدل‌سازی سیستم مرکب پی و شمع استفاده شده است. نتایج به دست آمده حاکی از اینست که با استفاده از شمع‌ها به صورت متصل از رادیه و منفصل از آن به صورت توامان (سیستم ترکیبی)، منجر به عملکرد بسیار مناسب سیستم مرکب در کاهش نشست حداکثر و غیریکنواخت پی می‌گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

NUMERICAL MODELLING OF DISCONNECTED PILED-RAFT FOUNDATION SYSTEMS SETTLEMENT WITH AN EMPHASIS ON NEW DEFINITION OF THESE SYSTEMS WITH HYBRID SYSTEM

نویسندگان [English]

  • vahed ghiasi 1
  • mobin moradi 2
1 Department of Civil Engineering, coolege of civil eng, malayer university, malayer, Iran
2 Department of Civil Engineering, Faculty of Eng, Malayer university, Malayer, Iran
چکیده [English]

The most extensive application of raft foundations, with pile when the raft alone can be enough resistance against the incoming load, to avoid large settlements of foundation, prevents the formation of differential settlement, pile group under the raft has been used. In this study, foundation deformation, maximum, average and differential settlements of foundation in piled-raft foundations systems under static loading in sandy soil using finite element modeling to various arrangements of piles and different composite systems regarding connection of raft and piles, has been studied and analyzed. The design of a pile group is usually based on a high safety of factor for the piles and the main design criterion is the group's load capacity. Plaxis 3D foundation finite element software version 1.6 is used to model piled-raft systems. Obtained results indicates that using the connected and disconnected piles as combined leads to very appropriate combined system performance on reduction the maximum and differential settlement of raft foundation.

کلیدواژه‌ها [English]

  • Numerical modelling
  • Settlement of raft
  • Piled-raft foundations
  • Hybrid Systems
 
 [1]اسلامی، ا. رنجبر، م.م. ریاضی، ط. ویس کرمی، م. (1385). پی های گسترده؛ تحلیل، طراحی و عملکرد. رشت: انتشارات دانشگاه گیلان، صفحات 289-359.
[2] حسن آبادی، م.، حداد، ع.، نادرپور، ح. (1388)، استفاده از شبکه های عصبی مصنوعی در تخمین ظرفیت باربری شالوده های سطحی واقع بر بسترهای چند لایه، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، دوره 9، شماره 24، صفحات 65-82.
[3] غلامی، ح.، حسینی نیا، ا. (1388)، تعیین ضرایب ظرفیت باربری شالوده های حلقوی به کمک روش خطوط مشخصه تنش، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، دوره 14، شماره 46، صفحات 61-73.
 [4] Randolph, M.F. (1994). Design Methods for Pile Groups and Piled Rafts. Paper presented at the 13th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE).
[5] Horikoshi, K. and Randolph, M.F. (1998). A Contribution to the Optimum Design of Piled Rafts. Geotechnique, 48(2), 301-317.
[6] Zeevaert, L. (1957). Compensated Friction-pile Foundation to Reduce the Settlement of Buildings on Highly Compressible Volcanic Clay of Mexico City. Paper presented at the 4th International Conference on Soil Mechanics and Foundation Engineering (ICSMFE), London.
[7] Burland,J.B., Broms, B.B., & de Mello, V.F.B. (1978). Behavior of Foundations and Structures. Paper presented at the 9th ICSMFE, Tokyo.
[8] Price, G. and Wardle, I.F. (1986). Monitoring of Load Sharing Between Piles and Raft. Proceedings of the Institution of Civil Engineers, 80(6), 1505-1518.
[9] Franke, E. (1991). Measurements Beneath Piled Rafts. Paper presented at the ENPC Conference, Paris, 1-28.
[10] Poulos, H.G., Small, J.C., Ta, L.D., Sinha, J. & Chen, L. (1997). Comparison of some Methods for Analysis of Piled Rafts. Paper presented at the 14th International Conference on Soil Mechanics and Foundation Engineering, Hamburg.
[11] غنی زاده، م.، سروقدمقدم، ع.، فرزام، م. (1388)، تاثیر بار محوری و مشخصات مصالح بر عملکرد لرزه‌ای دیوار برشی کوتاه، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، دوره 15، شماره 48، صفحات 125-137.
[12] شفابخش، غ.، مهرابی، ا. (1388)، تحلیل عددی روسازی انعطاف پذیر راه به روش میکروسازه ای، نشریه علمی و پژوهشی مدل سازی در مهندسی، دانشگاه سمنان، دوره 13، شماره 40، صفحات 59-67.
[13] Russo, G. Viggiani, C. (1998). Factors controlling soil-structure interaction for piled rafts. In: Darmstadt Geotechnics. Darmstadt: Darmstadt University of Technology; .p. 297–322.
[14] Horikoshi K, Randolph MF. (1999). Estimation of overall settlement of piled rafts. Soils and Foundations;39(2):59–68.
[15] Poulos, H.G. (2001). Piled raft foundations: design and application. Geotechnique, 51(2):95–113.
Viggiani, C. (2001). Analysis and design of piled foundations, 1st Arrigo Croce Lecture, RivistaItaliana de Geot; pp. 47–75.
[16] Mandolini, A. (2003). Design of piled raft foundations: practice and development. In: The4th Intl. Seminar on Bored and Auger Piles; pp. 59–82.
[17] Randolph, M.F. (2003). Science and empiricism in pile foundation design. Geotechnique ;53(10):847–75.
[18] Randolph, M.F. Jamiolkowski, M.B, Zdravkovic, L. (2004). Load carrying capacity of foundations. In: Jardine RJ, Potts DM, Higgins KG, editors. Advances in Geotechnical Engineering-The Skempton Conference. London: Thomas Telford Limited; pp. 207–40.
[19] Badelow, F., Poulos, H. G., Small, J. C., & Moyes, P. (2006). Economic foundation design for tall buildings. In Proc. 10th Int. Conf. on Piling and Deep Foundations”, Amsterdam, Netherlands.‏
[20] De Sanctis, L., & Mandolini, A. (2006). Bearing capacity of piled rafts on soft clay soils. Journal of Geotechnical and Geoenvironmental Engineering, 132(12), 1600-1610.‏
[21] De Sanctis, L., & Russo, G. (2008). Analysis and performance of piled rafts designed using innovative criteria. Journal of geotechnical and geoenvironmental engineering, 134(8), 1118-1128.‏
[22] El-Garhy, B., Abdel Galil, A., Youssef, A.F., & Abo Raia, M. (2013). Behavior of Raft on Settlement Reducing Piles: Experimental Model Study. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 389-399.
[23] Wong, I.H., Chang, M.F., & Cao, X.D. (2000). Raft Foundations with Disconnected Settlement–Reducing Piles. In: Hemsley JA, editor. Design Application of Raft Foundations, Telford, 469-486.
[24] Hooper, J.A. (1974). Review of Behaviour of Piled Raft Foundations. London: Construction Industry Research and Information Association (CIRIA).
[25] صالحی ملکشاه، س. اسلامی، ا. (1392). عملکرد ژئوتکنیکی سیستم رادیه‌مرکب با ملاحظه‌ی متغیرهای شمع‌های منفصل. نشریه علمی پژوهشی مهندسی عمران شریف، دوره 2-29، شماره 4، صفحات 44-37.
[26] Tradigo, F., Pisanò, F., & Di Prisco, C. (2016). On the Use of Embedded Pile Elements for the Numerical Analysis of Disconnected Piled Rafts. Journal of Computers and Geotechnics, 72, 89-99.
[27] Reul, O. & Randolph, M. F. (2003). Piled Rafts in Overconsolidated Clay: Comparison of In situ Measurements and Numerical Analyses. Journal of Geotechnique, 53(3), 301–315.
[28] Lee, S., & Moon, J.S. (2016). Effect of Interactions Between Piled raft Components and Soil on Behavior of Piled Raft Foundation. KSCE Journal of Civil Engineering, 21(1), 243-252.
[29] Plaxis 3D Foundation version 1.6 Reference Manual. (2006). Delft University of Technology & PLAXIS B.V.
[30] Oh, E. Y. N., Huang, M., Surarak, C., Adamec, R., & Balasurbamaniam, A. S. (2008). Finite element modelling for piled raft foundation in sand. In Eleventh East Asia-Pacific Conference on Structural Engineering & Construction (EASEC-11)“Building a Sustainable Environment”, Taipei, Taiwan (Vol. 8).