مدل‌سازی نرخ نفوذ دستگاه تمام مقطع مکانیزه حفر تونل به روش سطح پاسخ

نوع مقاله: مقاله عمران

نویسندگان

1 استادیار، گروه مهندسی معدن و مواد، دانشگاه صنعتی ارومیه

2 هیات علمی گروه مهندسی مواد و معدن دانشگاه صنعتی ارومیه

چکیده

یکی از مسائل حیاتی در تخمین هزینه‌های ساخت و زمان اجرای پروژه‌های تونلی، پیش‌بینی عملکرد ماشین‌های حفاری مکانیزه تمام مقطع تونل (Tunnel Boring machine, TBM) است. عملکرد TBM بشدت وابسته به میزان نرخ نفوذ دستگاه است. هدف از پژوهش حاضر، بسط مدلی برای تخمین نرخ نفوذ TBM توسط رویکرد سطح پاسخ می باشد. تونل شماره سه کوینز واقع در نیویورک به عنوان مطالعه موردی انتخاب شده و مدل پیشنهادی با داده‌های آن مورد ارزیابی قرار گرفته است. با توجه به داده‌های ثبت شده از مشخصات ژئومکانیکی سنگ های در برگیرنده تونل، نرخ‌نفوذ دستگاه با منظورکردن پارامترهای مقاومت فشاری تک محوره و شاخص تردی سنگ سالم، زاویه ی مابین صفحات ناپیوستگی-گرای حفاری دستگاه و فاصله داری بین صفحات ناپیوستگی ها پیش‌بینی شده است. نتایج حاصل از مدل مبتنی بر سطح پاسخ با نتایج روش‌های فرآابتکاری به کار رفته توسط سایر محققین نظیر بهینه‌سازی اجتماع ذرات، تکامل دیفرانسیلی، جستجوی هارمونیک ترکیبی و بهینه‌ساز گری ولف بر اساس آزمون‌های آماری مورد مقایسه قرار گرفت. مقدار ضریب تعیین (R2) در آزمون تخمین – مقدار واقعی برای رویکرد سطح پاسخ برابر با 0/939 به دست آمد، در حالی که بهترین نتیجه برای روش‌های فرآابتکاری برابر با 0/713 بود. میانگین درصد قدرمطلق خطا برای روش پیشنهادی در تحقیق حاضر برابر با 3/849 بوده و بهترین مقدار برای سایر روش‌ها مورد بررسی برابر با 8/746 است. در مابقی آزمون‌های آماری صورت گرفته نیز مدل پیش‌بینی نرخ نفوذ مبتنی بر روش سطح پاسخ در مقایسه با سایر رویکرد‌ها بهترین نتیجه را دارا می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of response surface method to the prediction of TBM penetration rate

نویسندگان [English]

  • Mojtaba Mokhtarian Asl 1
  • Aref Alipour 2
1 Department of Mining and Metallurgical Engineering, Urmia University of Technology, Urmia, Iran
2 Department of Mining Engineering, Urmia University of Technology
چکیده [English]

Performance prediction of the tunnel boring machine (TBM) is one of the crucial issues for estimating excavation costs and construction time of tunnel projects. TBM performance highly depends on an achieved penetration rate. The aim of this study is to develop TBM penetration rate prediction models using Response surface method (RSM) and then to compare the results obtained from various meta-heuristics optimization techniques including Differential Evolution (DE), Hybrid Harmony Search (HS-BFGS) and Grey Wolf Optimizer (GWO). To achieve this aim, the database uniaxial compressive strength (UCS), intact rock brittleness (BI), the angle between plane of weakness and TBM driven direction and distance between planes of weakness are assembled by collecting data from Queens water tunnel project. According to the results, it can be said that the proposed model is a useful and reliable means to predict TBM penetration rate provided that a suitable dataset exists. From the prediction results the squared correlation coefficient (R2) between the observed and predicted values of the proposed model was obtained 0.939, which shows a high conformity between predicted and actual penetration rate. The performance of different predictor models controlled by Mean Absolute Percentage Error (MAPE), Route Mean Square Error (RMSE), Variance Absolute Relative Error (VARE), Variance Account for (VAF) and Correlation Coefficient (CC). Response surface method based model with higher VAF and CC as well as lower MAPE, RMSE, VARE will show better performance.

کلیدواژه‌ها [English]

  • Tunnel Boring Machine (TBM)
  • Penetration rate
  • Response surface method (RSM)
  • nonlinear prediction models
 
[1].    شفیعی نیک آبادی، م.، شفیعی نیک آبادی، م. و عظیمی، س. ع. (2015). پیش بینی تقاضا در زنجیره تامین با استفاده از الگوریتم های یادگیری ماشین (مورد مطالعه: زنجیره تامین شرکت ایران خودرو). مدل سازی در مهندسی،  13(41)، 127-136.
[2].    یوسفی، م. و مظلوم، م. (2014). روش های ترکیب شبکه عصبی در پیش بینی نتایج آزمایشات روانی و مقاومتی بتن خودتراکم. مدل سازی در مهندسی،  12(37)، 39-49.
[3].    Tarkoy, P.J. (1974). Predicting tunnel boring machine (TBM) penetration rates and cutter costs in selected rock types.
[4].    Graham, P. (1976). Rock exploration for machine manufacturers. Exploration for rock engineering, 173-80.
[5].    Farmer, I. and Glossop N. (1980). Mechanics of disc cutter penetration. Tunnels and Tunnelling International,  12(6), 22-25.
[6].    Nelson, P., O'Rourke T.D., and Kulhawy F.H. (1983). Factors affecting TBM penetration rates in sedimentary rocks. in The 24th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association,
[7].    Cassinelli, F., Cina S., and Innaurato N. (1983). Power consumption and metal wear in tunnel-boring machines: analysis of tunnel-boring operation in hard rock: In: Tunneling 82, Proceedings of the 3rd International Symposium, Brighton, 7–11 June 1982, P73–81. Publ London: IMM, 1982. in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, A25.
[8].    Innaurato, N., Mancini A., Rondena E., and Zaninetti A. (1991). Forecasting and effective TBM performances in a rapid excavation of a tunnel in Italy. in 7th ISRM Congress. International Society for Rock Mechanics,
[9].    Sapigni, M., Berti M., Bethaz E., Busillo A., and Cardone G. (2002). TBM performance estimation using rock mass classifications. International Journal of Rock Mechanics and Mining Sciences,  39(6), 771-788.
[10].  Bieniawski, Z., Celada B., and Galera J.M. (2007). Predicting TBM Excavatability. Tunnels & Tunnelling International.
[11].  Barton, N. (1999). TBM performance estimation in rock using Q(TBM). Tunnels and Tunnelling International,  31(9), 30-34.
[12].  Hassanpour, J., Rostami J., Khamehchiyan M., Bruland A., and Tavakoli H.R. (2010). TBM Performance Analysis in Pyroclastic Rocks: A Case History of Karaj Water Conveyance Tunnel. Rock Mechanics and Rock Engineering,  43(4), 427-445.
[13].  Ozdemir, L. (1977). Development of theoretical equations for predicting tunnel boreability.  Colorado School of Mines: USA CO.
[14].  Rostami, J. and Ozdemir L. (1993). A new model for performance prediction of hard rock TBMs. in Proceedings of the rapid excavation and tunneling conference. SOCIETY FOR MINING, METALLOGY & EXPLORATION, INC, 793-793.
[15].  Blindheim, O. (1979). Boreability predictions for tunneling, in Department of Geological Engineering.  The Norwegian Institute of Technology, 406.
[16].  Bruland, A. (1998). Hard Rock Tunnel Boring Machine Vol. 3 - Advance Rate and Cutter Wear, in Department of Civil and Transport Engineering.  Norwegian University of Science and Technology: NTNU, Trondheim 54.
[17].  Roxborough, F.F. and Phillips H.R. (1975). Rock excavation by disc cutter. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,  12(12), 361-366.
[18].  Sanio, H.P. (1985). Prediction of the performance of disc cutters in anisotropic rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,  22(3), 153-161.
[19].  Gong, Q.M., Jiao Y.Y., and Zhao J. (2006). Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters. Tunnelling and Underground Space Technology,  21(1), 46-55.
[20].  Gong, Q.M. and Zhao J. (2007). Influence of rock brittleness on TBM penetration rate in Singapore granite. Tunnelling and Underground Space Technology,  22(3), 317-324.
[21].  Gong, Q.M., Zhao J., and Jiao Y.-Y. (2005). Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunnelling and Underground Space Technology,  20(2), 183-191.
[22].  Sharifzadeh, M. and Iranzadeh A. (2009). Three dimensional numerical modelling of joint spacing and orientation effects on rock cutting process by a single TBM cutter. CIM Bulletin,  102(1117), 1-5.
[23].  افتخاری، س.م.، مصلح س.، باغبانان، باقرپور و راحب (2013). تحلیل عددی تأثیر مشخصات هندسی شکستگی‌های توده سنگ بر نرخ نفوذ دستگاهTBM . نشریه علمی-پژوهشی مهندسی معدن,  (8)18، 1-12.
[24].  Labra, C., Rojek J., and Oñate E. (2017). Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter. Rock Mechanics and Rock Engineering,  50(3), 621-638.
[25].  Benardos, A. and Kaliampakos D. (2004). Modelling TBM performance with artificial neural networks. Tunnelling and Underground Space Technology,  19(6), 597-605.
[26].  Zhao, Z., Gong Q., Zhang Y., and Zhao J. (2007). Prediction model of tunnel boring machine performance by ensemble neural networks. Geomechanics and Geoengineering: An International Journal,  2(2), 123-128.
[27].  Grima, M.A., Bruines P., and Verhoef P. (2000). Modeling tunnel boring machine performance by neuro-fuzzy methods. Tunnelling and Underground Space Technology,  15(3), 259-269.
[28].  Mahdevari, S., Shahriar K., Yagiz S., and Shirazi M.A. (2014). A support vector regression model for predicting tunnel boring machine penetration rates. International Journal of Rock Mechanics and Mining Sciences,  72, 214-229.
[29].  Gao, L. and Li X.-b. (2015). Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions. Journal of Central South University,  22(1), 290-295.
[30].  Hamidi, J.K., Shahriar K., Rezai B., and Rostami J. (2010). Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunnelling and Underground Space Technology,  25(4), 333-345.
[31].  Ghasemi, E., Yagiz S., and Ataei M. (2014). Predicting penetration rate of hard rock tunnel boring machine using fuzzy logic. Bulletin of Engineering Geology and the Environment,  73(1), 23-35.
[32].  Armaghani, D.J., Mohamad E.T., Narayanasamy M.S., Narita N., and Yagiz S. (2017). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology,  63, 29-43.
[33].  Yagiz, S. and Karahan H. (2011). Prediction of hard rock TBM penetration rate using particle swarm optimization. International Journal of Rock Mechanics and Mining Sciences,  48(3), 427-433.
[34].  Armaghani, D.J., Faradonbeh R.S., Momeni E., Fahimifar A., and Tahir M. (2017). Performance prediction of tunnel boring machine through developing a gene expression programming equation. Engineering with Computers, 1-13.
[35].  Yagiz, S. (2008). Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology,  23(3), 326-339.
[36].  Yagiz, S. and Karahan H. (2015). Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass. International Journal of Rock Mechanics and Mining Sciences,  80, 308-315.
[37].  Farooq Anjum, M., Tasadduq I., and Al-Sultan K. (1997). Response surface methodology: A neural network approach. European Journal of Operational Research,  101(1), 65-73.
[38].  Kwak, J.-S. (2005). Application of Taguchi and response surface methodologies for geometric error in surface grinding process. International Journal of Machine Tools and Manufacture,  45(3), 327-334.
[39].  Baş, D. and Boyacı İ.H. (2007). Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering,  78(3), 836-845.
[40].  مردعلی زاده، م.، سلیمانی یزدی، م.ر. و صفرخانیان، م. (2014). مدلسازی تجربی و بررسی تاثیر پارامترهای فرایند جوشکاری اصطکاکی اختلاطی آلیاژ آلومینیوم5456 با استفاده از روش سطح پاسخ. مدل سازی در مهندسی،  12(38)، 103-116.