[1] Wu, H.W., Lin, C.C., Hwang, S.M, Chang, Y.J., Lee, G.B. (2011). A Microfluidic Device for Chemical and Mechanical Stimulation of Mesenchymal Stem Cells, Microfluidics and Nanofluidics, Vol. 11, pp. 545–556.
[2] McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., Chen, C.S. (2004). Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment, Developmental Cell, Vol. 6, pp. 483–495.
[3] Pek, Y.S., Wan, A.C., Ying, J.Y. (2010). The Effect of Matrix Stiffness on Mesenchymal Stem Cell Differentiation in a 3D Thixotropic Gel, Biomaterials, Vol. 31, pp. 385–391.
[4] Schätti, O., Grad, S., Goldhahn, J., Salzmann, G., Li, Z., Alini, M., et al. (2011). A Combination of Shear and Dynamic Compression Leads to Mechanically Induced Chondrogenesis of Human Mesenchymal Stem Cells, European Cells & Materials, Vol. 22, pp. 214–225.
[5] Sim, W.Y., Park, S.W., Park, S.H., Min, B.H., Park, S.R., Yang, S.S. (2007). A Pneumatic Micro Cell Chip for the Differentiation of Human Mesenchymal Stem Cells Under Mechanical Stimulation, Lab on a Chip, Vol. 7, pp. 1775–1782.
[6] Zhao, F., Chella, R., Ma, T. (2015). . Effects of Shear Stress on 3‐D Human Mesenchymal Stem Cell Construct Development in a Perfusion Bioreactor System: Experiments and Hydrodynamic Modeling Biotechnology and Bioengineering, Vol. 15, pp. 584–595.
[7] Vaziri. A., Mofrad. M.R. (2007). Mechanics and Deformation of the Nucleus in Micropipette Aspiration Experiment, Journal of Biomechanics, Vol. 40, pp. 2053–2062.
[8] Dailey, H.L., Ricles, L.M., Yalcin, H.C., Ghadiali, S.N. (1985). Image-Based Finite Element Modeling of Alveolar Epithelial Cell Injury During Airway Reopening, Journal of Applied Physiology, Vol. 106, pp. 221–232.
[9] Deshpande, V.S., McMeeking, R.M., Evans, A.G. (2006). A Bio-Chemo-Mechanical Model for Cell Contractility, Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, pp. 14015–14020.
[10] Deshpande, V.S., Mrksich, M., McMeeking, R.M., Evans, A.G. (2008). A Bio-Mechanical Model for Coupling Cell Contractility with Focal Adhesion Formation, Journal of the Mechanics and Physics of Solids, Vol. 56, pp. 1484–1510.
[11] McGarry, J.P., Fu, J., Yang, M.T., Chen, C.S., McMeeking, R.M., Evans, A.G., et al. (2009). Simulation of the Contractile Response of Cells on an Array of Micro-Posts, Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, Vol. 367, pp. 3477–3497.
[12] Alihemmati, Z., Vahidi, B., Haghighipour, N., Salehi, M. (2017). Computational Simulation of Static/Cyclic Cell Stimulations to Investigate Mechanical Modulation of an Individual Mesenchymal Stem Cell Using Confocal Microscopy, Materials Science & Engineering C-Materials for Biological Applications, Vol. 70, pp. 494–504.
[13] Ghaemi, R.V., Vahidi, B., Sabour, M.H., Haghighipour, N., Alihemmati, Z. (2016). Fluid–Structure Interactions Analysis of Sear-Induce Modulation of a Mesenchymal Stem Cell: an Image-Based Study, Artificial Organs, Vol. 40, pp. 278–287.
[14] Mullen, C.A., Vaughan, T.J., Voisin, M.C., Brennan, M.A., Layrolle, P., McNamara, L.M. (2014). Cell Morphology and Focal Adhesion Location Alters Internal Cell Stress, Journal of The Royal Society Interface, Vol. 11.
[15] Jean, R.P., Gray, D.S., Spector, A.A., Chen, C.S. (2004). Characterization of the Nuclear Deformation Caused by Changes in Endothelial Cell Shape, Journal of Biomechanical Engineering, Vol. 126, pp. 552–558.
[16] Vishavkarma, R., Raghavan, S., Kuyyamudi, C., Majumder, A., Dhawan, J., Pullarkat, P.A. (2014). Role of Actin Filaments in Correlating Nuclear Shape and Cell Spreading, Public Library of Science, Vol. 9.
[17] Wang, N., Stamenovic, D. (2000). Contribution of Intermediate Filaments to Cell Stiffness, Stiffening, and Growth, American Journal of Physiology-Cell Physiology, Vol. 279, pp. 181-194.
[18] Thoumine, O., Cardoso, O., Meister, J., Majumder (1999). Chang in the Mechanical Properties of Fibroblasts during Spreading: a Micromanipulation Study, European Biophysics Journal, Vol. 28, pp. 222-234.
[19] McGarry, J.G., Prendergast, P.J. (2004). A Three Dimensional Finite Element Model of an Adherent Eukaryotic Cell, European Cells and Materials, Vol. 7, pp. 27-34.
[20] Speigel, M.R. (1964). Schaum's Outline of Theory and Problems of Complex Variables: with an Introduction to Conformal Mapping and Its Application, New York, McGraw Hill.
[21] Bonet, J., Wood, R.D. (2008). Nonlinear Continuum Mechanics for Finite Element Analysis, United Kingdom, Cambridge University Press.
[22] Docheva, D., Padula, D., Popov, C., Mutschler, W., Clausen-Schaumann, H., Schieker, M. (2008). Researching into the Cellular Shape, Volume and Elasticity of Mesenchymal Stem Cells, Osteoblasts and Osteosarcoma Cells by Atomic Force Microscopy, Journal of Cellular and Molecular Medicine, Vol. 12, pp. 537–552.
[23] Guilak, F., Tedrow, J. Burgkart, R. (2000). Viscoelastic Properties of the Cell Nucleus, Biochemical and Biophysical Research Communication, Vol. 269, pp. 781–786.
[24] Zielinski, R., Mihai, C., Kniss, D., Ghadiali, S.N. (2013). Finite Element Analysis of Traction Force Microscopy: Influence of Cell Mechanics, Adhesion, and Morphology, Journal of Biomechanical Engineering, Vol. 135.