مدل‌سازی عملکرد گرمایی گردآورنده‌های خورشیدی بدون پوشش با صفحه جاذب سوراخ‌دار

نوع مقاله: مقاله مکانیک

نویسنده

گروه فنی و مهندسی، مرکز آموزش عالی شهرضا، شهرضا، اصفهان، ایران

چکیده

گردآورنده‌های خورشیدی بدون پوشش با صفحه جاذب سوراخ‌دار از انواع گردآورنده‌هایی هستند که برای گرمایش خورشیدی هوا به منظور استفاده در سیستمهای تهویه مطبوع و خشک‌کن‌ها استفاده می‌شوند. عملکرد گرمایی این گردآورنده‌ها تابع عوامل مختلفی مانند قطر و گام سوراخ‌ها، سرعت مکش هوا و تابش خورشیدی است. با استفاده از مدل‌سازی می‌توان ارزیابی درستی از تأثیر هر کدام از پارامترهای مذکور بر عملکرد گرمایی گردآورنده بدست آورد. در این مقاله، با استفاده از مدل‌سازی انتقال گرما و موازنه انرژی در اجزاء مختلف گردآورنده نمونه با کاربرد پیش گرمایش هوای ساختمان، بازده گرمایی و دمای خروجی گردآورنده برحسب پارامترهای میزان تابش خورشیدی، سرعت مکش هوا، قطر و گام سوراخهای صفحه جاذب به‌دست آمده‌اند و اثر هر کدام از این پارامترها برآورد شده است. همچنین کارآیی تبادل گرمایی صفحات سوراخ‌دار به ازای سرعت مکش هوا، قطر و گام سوراخ‌ها برآورد شده است. نتایج نشان می‌دهد که افزیش سرعت مکش هوا و تابش خورشیدی باعث افزایش بازده گرمایی گردآورنده می‌شود. همچنین، افزایش قطر و گام سورا‌خ‌ها سبب کاهش عملکرد گرمایی گردآورنده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Thermal performance modeling of unglazed transpired solar collectors

نویسنده [English]

  • Sadegh Motahar
Faculty of Engineering, University of Shahreza, Shahreza, Iran
چکیده [English]

Unglazed transpired solar collectors (UTCs) are solar air heating collectors that used for preheating air in ventilation systems or producing hot air for drying systems. Thermal performance of UTCs is a function of various parameters including incident solar radiation, air approach velocity, diameter and pitch of perforations. Modeling predicts the thermal performance of UTCs over a wide range of design and operating conditions. This paper presents the details of modeling for UTC using heat transfer expressions for the collector components and energy balances. The effects of key parameters on the performance of a UTC were studied by varying the approach velocity, solar radiation, diameter and pitch of perforations and finding their influence on collector thermal efficiency, heat exchange effectiveness and outlet air temperature. Results showed that the UTC thermal efficiency increases by increase in solar radiation and approach velocity, but the efficiency decreases by increasing plate hole diameters and pitch.

کلیدواژه‌ها [English]

  • solar collector
  • transpired plates
  • modeling
  • thermal performance
  • thermal efficiency
  • outlet temperature
 
[1]    رجبی خانقاهی، ع.، عباس نژاد، ع.، عمیدپور، م. (1396)، بهینه‌سازی همزمان پارامترهای طراحی آبگرمکن خورشیدی با درنظر گرفتن الگوی مصرف، مجله مدل‌سازی در مهندسی، دوره 15، شماره 48، صص 111-123.
[2]    گزانه، ا.، بهشتی نیا، م.ع. (1394)، شبیه سازی و تحلیل فنی اقتصادی آبگرمکن خورشیدی برای کاربری مسکونی، مجله مدل‌سازی در مهندسی، دوره 13، شماره 43،  صص 107-119.
[3]    فتوحی بافقی، ا.،  رهبر، ن.، ابوالفضلی اصفهانی، ج. (1392)، به‌سازی تولید در آب شیرین کن خورشیدی لوله ای با استفاده از مدل سازی عددی، مجله مدل‌سازی در مهندسی، دوره 11، شماره 33، صص 45-56.
[4]    Hollick, J.C. (1994), Unglazed Solar Wall Air Heaters, Renewable Energy, Vol. 5, pp. 415-421.
[5]    Hollick, J.C. (1999), In: commercial scale solar drying, Renewable Energy, Vol.16, pp 714–719.
[6]    Pesaran, A.A., Wipke, K. (1994), Use of unglazed transpired solar collectors for desiccant cooling, Solar Energy, Vol.52, pp 419-427.
[7]    Cordeau, S., Barrington, S. (2011), Performance of unglazed solar ventilation air pre-heaters for broiler barns, Solar Energy, Vol. 85, pp 1418-1429.
[8]    Li, S., Karava, P. (2014), Energy modeling of photovoltaic thermal systems with corrugated unglazed transpired solar collectors – Part 2: Performance analysis, Solar Energy, Vol. 102, pp 297-307.
[9]    Conserval Engineering Inc,  www.solarwall.com
[10] Kutscher, C.F., Christensen C., Barker, G. (1993), Unglazed transpired solar collectors: heat loss theory, ASME Journal of Solar Engineering, Vol. 115, pp.182–188.
[11] Kutscher, C.F. (1994), Heat exchanger effectiveness and pressure drop for air flow through perforated plates, with and without crosswind, ASME Journal of Heat Transfer, Vol.116, pp.391–399.
[12] Gunnewiek, L.H., Brundett E., Hollands, K.G.T. (1996), Flow Distribution in Unglazed Transpired Plate Solar Air Heaters of Large Area,  Solar Energy , Vol.58, pp. 227-237.
[13] Van Decker, G.W.E., Hollands, K.G.T., Brunger, A.P. (2001), Heat exchange relations for unglazed transpired solar collectors with circular holes on a square or triangular pitch, Solar Energy, Vol.71,  pp. 33–45.
[14] Fleck, B.A., Meier, R.M., Matović, M.D. (2002), A field study of the wind effects on the performance of an unglazed transpired solar collector, Solar Energy, Vol. 73, pp. 209-216.
[15] Augustus Leon, M., Kumar, S. (2007), Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors , Solar Energy, Vol. 81,  pp. 62-75.
[16] Motahar, S., Alemrajabi, A.A. (2010), An Analysis of Unglazed Transpired Solar Collectors Based on Exergetic Performance Criteria, Int. J. of Thermodynamics, Vol. 13, pp. 153-160.
[17] Badache, M., R.Rousse, D., Hallé, S., Quesada, G. (2013), Experimental and numerical simulation of a two-dimensional unglazed transpired solar air collector, Solar Energy, Vol. 93, pp. 209-219.
[18] Tajdaran, S., Bonatesta, F., Ogden, R.,  Kendrick, C. (2016), CFD modeling of transpired solar collectors and characterisation of multi-scale airflow and heat transfer mechanisms, Solar Energy, Vol. 131, pp. 149-164.
[19] Wang, X., Lei, B., Bi, H., Yu, T. (2017), A simplified method for evaluating thermal performance of unglazed transpired solar collectors under steady state, Applied Thermal Engineering, Vol. 117, pp. 185-192.
[20] Erenturk, S., Erenturk, K. (2018), Comparisons of novel modeling techniques to analyze thermal performance of unglazed transpired solar collectors, Measurement, Vol. 116, pp. 412-421.
[21] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. (2007), Fundamentals of Heat and Mass Transfer, sixth ed., John Wiley & Sons Inc., New York.
[22] Summers, D.N. (1995), Thermal Simulation and Economic Assessment of Unglazed Transpired Collector Systems, MSc. Thesis, University of Wisconsin-Madison, USA.