مهندسی در بکارگیری ابزار محاسباتی برای تسریع در زمان تشخیص ناپایداری ولتاژ

نوع مقاله : مقاله برق

نویسندگان

1 دانشگاه شهیدچمران اهواز

2 دانشگاه علم و صنعت ایران

چکیده

شبیه‌سازی در حوزه زمان یک ابزار ضروری برای ارزیابی دینامیکی شبکه‌های قدرت است. در حال حاضر، پیچیدگی‌های زمان محاسباتی مانعی در بکارگیری این ابزار در تصمیم‌گیری‌های حوزه زمان واقعی است. در این مقاله، مهندسی در بکارگیری ابزار محاسباتی نرم‌افزار DIgSILENT برای تسریع در زمان تشخیص ناپایداری ولتاژ بلندمدت به عنوان اولین ابزار در سیستم تشخیص و جلوگیری از وقوع ناپایداری ولتاژ ارائه شده است. بدین منظور سه پارامتر اساسی در بکارگیری شبیه سازها که عبارتند از : پله زمان محاسباتی، پله زمان گزارش‌‌گیری و متغیرهای گزارش‌گیری مورد بررسی و زمان رسیدن به پاسخ (زمان ناپایداری) به ازای مقادیر مختلف آنها مقایسه شده اند تا مقادیر مناسب برای آنها ارائه شوند. نتایج بدست آمده حاکی از آن است که معماری پیاده‌سازی شده برای شبکه تست Nordic32 در یک پردازنده متوسط، منجر به بیش از نود درصد کاهش زمان تشخیص نسبت به زمان واقعی ناپایداری می شود. این موفقیت در تسریع تشخیص زمان ناپایداری فرصت کاربر را در انتخاب و بکارگیری اقدامات اصلاحی افزایش می دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Settings in Employing Simulation Tools for Fast Determination of Time to Voltage Instability

نویسندگان [English]

  • M KH 1
  • M J 1
  • S S 1
  • S. Mohammad Shahrtash 2
1 university
2 Iran University of Science & Technology
چکیده [English]

Time domain simulation is an essential tool for dynamic security assessment in power system stability studies. Today, computational complexity is the concern that limits online applications of time domain simulation results. This paper proposes an engineering procedure for the use of computational time domain tools for acceleration in the time of estimating voltage instability time. For this purpose, three key parameters in the computational burden which are the computational time step, the reporting time step, and the number of reporting variables are investigated and the results of estimation time are compared for different values of these parameters. The results by an average processor have been shown that implementation of proposed procedure for Nordic32 can lead to a reduction in estimation time more than ninety percent of the instability detection time compared to the real instability time. This achievement gives the operator more time to decide, select and execute appropriate remedial actions.

کلیدواژه‌ها [English]

  • Simulation Tool
  • Voltage Instability
  • Accelerating computational time
  • Computational time step
  • Reporting variables
[1]. F. Capitanescu, T. V. Cutsem and L. Wehenkel, (2009). Coupling Optimization and Dynamic Simulation for Preventive-Corrective Control of Voltage Instability, IEEE Transactions on Power Systems, vol. 24, no. 2, pp. 796-805.
[2]. P. Aristidou and T. Van Cutsem, (2014). Dynamic simulations of combined transmission and distribution systems using parallel processing techniques, Power Systems Computation Conference, Wroclaw, pp. 1-7.
[3]. L. Papangelis, P. Panciatici, T. Van Cutsem and M. S. Debry, (2015). A dynamic simulation approach to identify additional reactive reserves against long-term voltage instability, IEEE Eindhoven PowerTech, Eindhoven, pp. 1-6.
[4]. T. Weckesser, V. Franz, E. Grebe and T. Van Cutsem, (2017). A model reduction approach for simulation of long-term voltage and frequency dynamics, IEEE Manchester PowerTech, Manchester, pp. 1-6
[5]. م. درفشیان مرام، ن. امجدی (1395). جلوگیری از رخداد ناپایداری‌های گذرا و ولتاژ با استفاده از یک طرح اقدامات اصلاحی مبتنی بر قطع تولید و حذف بار، مجله علمی و پژوهشی مدل­سازی در مهندسی، دانشگاه سمنان، دوره 14، شماره 46، صفحه 137- 150.
[6]. م. ح. ولایتی، ن. امجدی، ع. خواجه وندی (1392). ارزیابی تأثیر راه‌کار کنترل توان راکتیو مبتنی بر ولتاژ ترمینال ژنراتورها بر دوشاخگی LIB و حد دینامیکی پایداری ولتاژ، مجله علمی و پژوهشی مدل­سازی در مهندسی، دانشگاه سمنان، دوره 11، شماره 33، صفحه 69-81.
[7]. ن. امجدی، م. ح. ولایتی (1389). بررسی تأثیر مدل‌های بار، پارامترهای سیستم تحریک و محدودیت توان راکتیو تولیدی ژنراتورهای سیستم قدرت در حد دینامیکی پایداری ولتاژ با استفاده از یک آنالیز ترکیبی، مجله علمی و پژوهشی مدل­سازی در مهندسی، دانشگاه سمنان، دوره 8، شماره 20، صفحه 39-55.
[8]. M. Glavic and T. Van Cutsem, (2009). Wide-Area Detection of Voltage Instability From Synchronized Phasor Measurements. Part I: Principle, IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1408-1416.
[9]. R. Sodhi, S. C. Srivastava and S. N. Singh, (2012). A Simple Scheme for Wide Area Detection of Impending Voltage Instability, IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 818-827.
[10]. C. D. Vournas, C. Lambrou and P. Mandoulidis, (2017). Voltage Stability Monitoring From a Transmission Bus PMU, IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3266-3274.
[11]. M. M. M. Kamel, A. A. Karrar and A. H. Eltom, (2018). Development and Application of a New Voltage Stability Index for On-Line Monitoring and Shedding, IEEE Transactions on Power Systems, under publication.
[12]. Ashrafi and S. M. Shahrtash, (2014). Dynamic Wide Area Voltage Control Strategy Based on Organized Multi-Agent System, IEEE Transactions on Power Systems, vol. 29, no. 6, pp. 2590-2601.
[13]. J. H. Liu and C. C. Chu, (2014). Wide-Area Measurement-Based Voltage Stability Indicators by Modified Coupled Single-Port Models, IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 756-764.
[14]. Tushar, S. S. Biswas and A. K. Srivastava, (2015). A comparative study of model and measurement based voltage stability approaches, North American Power Symposium (NAPS), Charlotte, NC, pp. 1-6.
[15]. J. Chen and M. L. Crow, (2008). A Variable Partitioning Strategy for the Multirate Method in Power Systems, IEEE Transactions on Power Systems, vol. 23, pp. 259-266.
[16]. J. Blanger, P. Venne and J.-N. Paquin, (2010). The what, where and why of real-time simulation, IEEE PES General Meeting, pp. 37-49
[17]. M. D. O. Faruque, T. Strasser, G. Lauss, V. Jalili-Marandi, P. Forsyth, C. Dufour, et al., (2015). Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis, IEEE Power and Energy Technology Systems Journal, vol. 2, pp. 63-73.
[18]. B. Haut, V. Savcenco, and P. Panciatici, (2012). A Multirate Approach for Time Domain Simulation of Very Large Power Systems, International Conference on System Science (HICSS), pp. 2125-2132.
[19]. E. Gawronska, N. Sczygiol, (2014). Relationship between Eigenvalues and Size of Time Step in Computer Simulation of Thermomechanics Phenomena, in Proceedings of the International Multi Conference of Engineers and Computer Scientists (IMECS), pp. 881-885
[20]. M. PÄoller and M. Schmieg, (1997). The efficient simulation of multiple time scale systems, in Proceedings of the International Conference on Power Systems Transients (IPST), pp. 22-26.
[21]. M. PÄoller and M. Schmieg, (1999). Exploiting multiple time scale properties for fast simulation algorithms, in Proceeding of the Power Systems Computation Conference (PSCC), pp. 1-7.
[22]. C. Gear, (1974). Multirate Methods for Ordinary Differential Equations, University Illinois at Urbana-Champaign, Technical Report.
[23]. P. I. Hwang, S. J. Ahn, S. I. Hur, Y. T. Yoon, and S. I. Moon, (2010). Adaptive step size method for the power system model of dispatcher training simulator, in IEEE PES General Meeting, pp. 1-7.
[24]. Test Systems for Voltage Stability Analysis and Security Assessment, (2015). IEEE PES-TR19, prepared by the Power System Dynamic Performance Committee, Power System Stability Subcommittee.