ارائه، بررسی و مقایسه مبدل‌های dc-dc جدید تک کلیده با ضریب بهره بالا و تنش ولتاژ کم دو سر کلید

نوع مقاله: مقاله برق

نویسندگان

شهید مدنی آذربایجان

چکیده

مبدل‌های افزاینده مرسوم و کاهنده-افزاینده ضریب بهره پائینی دارند و بهره ولتاژ این مبدل‌ها با مقاومت‌های پارازیتی محدود می‌شود و به همین دلیل می‌بایست از مبدل‌هایdc-dc با ضریب بهره بالا استفاده شود. در این مقاله مبدل‌های dc-dc بدون ترانسفورماتور کاهنده-افزاینده و افزاینده جدید با ضریب بهره بالا و تنش ولتاژ پائین در دو سر کلید پیشنهاد می‌شوند. در مبدل‌های پیشنهادی تنها یک کلید قدرت به کار رفته است و کنترل مبدل‌ها ساده است و تلفات هدایتی کلید قدرت نیز پائین می‌باشد. بهره ولتاژ مبدل‌های پیشنهادی بالاتر از مبدل‌های افزاینده مرسوم و کاهنده-افزاینده می‌باشد. مبدل‌های پیشنهادی در ناحیه کاری گسترده در رژیم هدایت پیوسته کار می‌کنند. مبدل‌های پیشنهادی تنش ولتاژ پائینی در دو سر کلید دارند و به همین دلیل تلفات هدایتی کلید پائین است. این مبدل‌ها در دو رژیم هدایت پیوسته و ناپیوسته می‌توانند کار کنند. در این مقاله ضمن ارائه مدهای کاری مختلف مبدل‌های پیشنهادی در دو رژیم هدایت به محاسبات مربوط به بهره، جریان‌های عبوری از عناصر، بازده و اندازه ریپل ولتاژ خازن‌ها پرداخته می‌شود. برای اثبات درستی محاسبات و عملکرد صحیح مبدل پیشنهادی نتایج شبیه‌سازی در محیط نرم‌افزار PSCADارائه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presentation, Analysis and Comparison of New Single-Switch High Step-up dc-dc Converters with Low Voltage Stress on the switch

نویسندگان [English]

  • mohammad reza banaei
  • hossein ajdarfaeghi bonab
چکیده [English]

The conventional boost and buck boost converter have low voltage gain. The voltage gain of the conventional converters is limited considering the issues such as parasitic resistance and because of this issues, high step up dc-dc converter must be used. In this paper, new transformerless high step-up buck boost and boost converters with low stress on the switch are proposed.  In this converters only one active switch are used, which makes the control scheme simple as well as reducing the switching power loss. The voltage gain of the proposed converters is higher than the conventional boost and buck boost converters. The proposed converters expand the continues conduction mode (CCM) operation region . Proposed converters have low voltage stress on the  active switch, low conduction loss and high efficiency. The proposed converters can be operated in the continuous conduction mode (CCM) and the discontinuous conduction mode (DCM). In this paper, different operation modes of the proposed converter, calculation of the voltage gain, the currents that flow through the components and efficiency are provided. To prove the correct operation of the proposed converters, simulation results in PSCAD software are provided.

کلیدواژه‌ها [English]

  • Conventional Boost and Buck Boost Converters
  • Dc-dc converters
  • Low voltage stress
  • Operational modes

 

 [1] Wong, Y.-C., Mak, O.-C., and Ioinovici, A. ‘Development of boost converter based on switched-capacitor circuits,’ IEEE TENCON., Beijing, China, 1993, Vol. 5, pp. 522-525

[2] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Transformerless DC–DC converters with a very high DC line-to-load voltage ratio,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2003, pp. III435–III438.

[3] R. J. Wai and R. Y. Duan, “High-efficiency DC/DC converter with high voltage gain,” IEE Proc. Inst. Elect. Eng.-Electr., Power Appl, Jul. 2005, vol.152, no.4, pp.793–802

[4] N. P. Papanikolaou and E. C. Tatakis, “Active voltage clamp in flyback converters operating in CCM mode under wide load variation,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 632-640, Jun 2004.

[5] Kwon J. M., Kwon B. H, “High Step-Up Active-Clamp Converter With Input-Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems,” IEEE Trans on Power Electronics., vol. 24, pp. l08-115. Jan 2009

[6] K. C. Tseng, J. T. Lin, and C. A. Cheng, “An Integrated Derived Boost-Flyback Converter for fuel cell hybrid electric vehicles,” in Proc. IEEE IFEEC, 2013, pp. 283-287.

[7] S. M. Chen, C. Y. Wang, and T. J. Liang, “A novel sinusoidal boost-flyback CCM/DCM  DC-DC converter,” in Proc.  IEEE APEC, 2014, pp. 3512-3516.

[8] J. Graw  and H. Zimmermann, “Charging multiple batteries using the boost-flyback converter,” in Proc. IEEE ENERGYCON, 2012, pp. 963-967.

[9] F. Yang, X. B. Ruan, Y. Yang, and Z. H. Ye, “Interleaved Critical Current Mode Boost PFC Converter With Coupled Inductor,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2404-2413, Sep. 2011.

[10] B. R. Lin and J. J. Chen, “Analysis and implementation of a soft switching converter with high-voltage conversion ratio,” Proc. IET-Power  Electron., vol. 1, no. 3, pp. 386–394,  Sep. 2008.

[11] L. S. Yang, T. J. Liang,and J. F. Chen. “Transformerless DC–DC Converters With High Step-Up Voltage Gain,” IEEE Trans. Ind. Electron, vol. 56, no. 8, pp. 3144–3152, Aug. 2009

[12] Tseng KC, Huang CC. “High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system,” IEEE Trans. Ind Electron, 2014; 61(32): 1311e9.

[13] Li W, Xiang X, Li C, Li W, He X. “Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system,” IEEE Trans. Ind Electron 2013;28(1):300e13.

[14] Fardoun AA, Ismail EH. “Ultra step-up DC-DC converter with reduced switch stress,” IEEE Trans. Ind Electron Appl., 2010; 46(5): 2025e34

[15] S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A cascaded high step-up DC–DC converter with single switch for microsource applications,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1146–1153, Apr 2011.

[16] R. J.Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, “High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3702–3714, Oct 2008

[17] S. V. Araujo, R. P. Torrico-Bascope, and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1987–1997, Jun 2010.

[18] S. C. Tan, M. Nur, S. Kiratipongvoot, S. Bronstein, Y. M. Lai, C. K. Tse,and A. Ioinovici, “Switched-capacitor converter configuration with low EMI emission obtained by interleaving and its large-signal modeling,” inProc. IEEE Int. Symp. Circuits Syst., pp. 1081–1084, May 2009.

[19] P. H. Tseng, J. F. Chen, and Y. P. Hsieh, “A novel active clamp high step-up  DC-DC converter with coupled-inductor for  fuel cell system,” in Proc. IEEE IFEEC, 2013, pp. 326-331.

[20] Y. H. Hu, W. D. Xiao, W. H. Li, and X. N. He, “Three-phase interleaved high-step-up converter with coupled-inductor-based voltage quadrupler,” IET Power Electronics., vol. 7, no. 7, pp. 1841-1849, Jul. 2014.

[21] Y. Zhao, W. H. Li, and X. N. He, “Single-Phase Improved Active Clamp Coupled-Inductor-Based Converter With Extended Voltage Doubler Cell,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2869-2878, Jun. 2012

[22] F. Yang, X. B. Ruan, Y. Yang, and Z. H. Ye, “Interleaved Critical Current Mode Boost PFC Converter With Coupled Inductor,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2404-2413, Sep. 2011.

[23] B. R. Lin and J. J. Chen, “Analysis and implementation of a soft switching converter with high-voltage conversion ratio,” Proc. IET-Power  Electron., vol. 1, no. 3, pp. 386–394, Sep. 2008.

[24] L. S. Yang, T. J. Liang,and J. F. Chen. “Transformerless DC–DC Converters With High Step-Up Voltage Gain,” IEEE Trans. Ind. Electron, vol. 56, no. 8, pp. 3144–3152, Aug. 2009.

[25] A. Tahavorgar and J. E. Quaicoe, “A Dual Series-Resonant DC–DC Converter,” IEEE Trans. Power Electron, vol. 32, no. 5, pp. 3708-3718, May. 2017.

[26] S. W. Lee and H. L. Do, “Zero-Ripple Input-Current High-Step-Up Boost–SEPIC DC–DC Converter With Reduced Switch-Voltage Stress,” IEEE Trans. Power Electron, vol. 32, no. 8, pp. 6170-6177, Aug. 2017.

[27] M. Zhang, Y. Xing, H. Wu, H. Hu and X. Ma, “A dual coupled inductors-based high step-up/step-down bidirectional dc-dc converter for energy storage system,” 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 2958-2963.

[28] O. Kirshenboim and M. M. Peretz, “High-Efficiency Nonisolated Converter With Very High Step-Down Conversion Ratio,” IEEE Trans. Power Electron, vol. 32, no. 5, pp. 3683-3690, May. 2017.

[29] B. P. Baddipadiga and M. Ferdowsi, “A High-Voltage-Gain DC–DC Converter Based on Modified Dickson Charge Pump Voltage Multiplier,” IEEE Trans. Power Electron, vol. 32, no. 10, pp. 7707-7715, Oct. 2017.

]30 [ مهدی سلیمی و مریم پرنادم، "مبدل DC-DC افزاینده جدید مبتنی بر کلیدزنی سلفی/خازنی با بهره ولتاژ بسیار بالا"، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 1، بهار 1396، صفحه 121-107.

[31] M. R. Banaei, H. A. F. Bonab “A nonisolated transformerless high voltage gain buck boost dc-dc converter,” Modares Journal of Electrical Engineering., vol. 15, no. 3, pp. 9-19, 2015.

[32] J. Lu, Y. Wang and X. Li, “Isolated high step-up DC–DC converter with integrated cascade structure,” IET Power Electron., vol. 11, no. 7, pp. 1143-1152, Jun. 2018.

[33] H. Seok, B. Han, B. H. Kwon and M. Kim, “High Step-Up Resonant DC–DC Converter With Ripple-Free Input Current for Renewable Energy Systems,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8543-8552, Nov. 2018.

[34] A. Ajami, H. Ardi and A. Farakhor, “Design, analysis and implementation of a buck–boost DC/DC converter,” IET Power Electron., vol. 7, no. 12, pp. 2902-2913, Dec. 2014.