مدل مداری و ماتریس انتقال خطوط ارتباطی نانولوله‌های کربنی چندلایه ناهمسان باندل شده-

نوع مقاله : مقاله برق

نویسندگان

1 گروه الکترونیک، دانشکده مهندسی برق، رایانه و مهندسی پزشکی، دانشگاه آزاد اسلامی واحد قزوین

2 گروه برق - الکترونیک دانشکده فنی دانشگاه تربیت مدرس

3 دانشگاه شریف، دانشیار دانشکده برق

چکیده

با استفاده از مدل خط انتقال چندگانه، مدل مداری جامعی برای استفاده در خطوط ارتباطی نانولوله‌های کربنی چندلایه ناهمسان باندل شده پیشنهاد می‌شود. با بهره گیری از مدل مداری پیشنهادی، یک مدل الگوریتمی نیز جهت محاسبه ماتریس انتقال این نوع خطوط ارتباطی ارائه می‌گردد. در مدل مداری و به تبع آن مدل الگوریتمی ماتریس انتقال، اثرات سلفی و خازنی و همچنین تونل زنی بین لایه‌های کربنی لحاظ شده است. برای هر چه دقیقتر شدن نتایج محاسبات، پارامتر تعداد بلوکهای توزیع شده برای این نوع خط ارتباطی ارائه می‌شود. جامع و الگوریتمی بودن مدل فوق به این معناست که می‌توان از آن در کلیه ابعاد و تکنولوژیهای خطوط ارتباطی استفاده کرد. در ضمن هر گونه تغییر در پارامترهای فیزیکی نانولوله ها به سادگی در مدل مداری و روابط ماتریس انتقال وارد می‌شود و می‌توان اثرات ناشی از آنها را بررسی کرد. با استفاده از مدل مداری و مدل الگوریتمی ماتریس انتقال استخراج شده می‌توان انواع تحلیلهای پایداری نظیر نایکوئیست، بد، نیکولز و پاسخهای حوزه زمان خطوط ارتباطی نانولوله‌های کربنی چندلایه ناهمسان باندل شده مورد استفاده در مدارات با مقیاس بزرگ را بررسی کرد. در این مقاله پس از معرفی مدل مداری پیشنهادی برای خطوط ارتباطی نانولوله‌های کربنی چندلایه ناهمسان باندل شده و استخراج مدل الگوریتمی ماتریس انتقال، به صورت موردی به استخراج نمودارهای خروجی این نوع خطوط ارتباطی در حوزه زمان و نایکوئیست می‌پردازیم. نتایج نشان می‌دهد که با افزایش طول یا قطر نانولوله ها، تاخیر خطوط ارتباطی افزایش یافته ولی پایداری نسبی آنها بیشتر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Circuit model and transfer matrix model of mixed multiwall carbon nanotube interconnects-

نویسندگان [English]

  • saeed haji-nasiri 1
  • mohammad kazem moravvej farshi 2
  • rahim faez 3
1 Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
2 department of electrical engineering, tarbiat modares unversity
3 department of electrical engineering, sharif unversity of technology
چکیده [English]

Using multi transmission line (MTL) model, a compact circuit model for mixed multiwall carbon nanotube (MMWCNT) interconnects is proposed. Using the proposed circuit model, an algorithmic model is proposed for calculating the transfer matrix of these interconnects. In the proposed circuit model and also algorithmic model, capacitive, inductive and tunneling effects between the carbon layers is considered. Moreover the concept of distributed circuit block parameters is proposed for this type of interconnects. This model is compact because it can be used in wide range and technology of interconnects. Also using this model, any change in the physical parameters of the nanotubes can be considered in the circuit model and algorithmic model. Using the circuit model and algorithmic model one can calculate various stability and time domain responses for MMWCNT interconnects in VLSI circuits. In this paper after proposing the circuit model and algorithmic model, we have calculated step time response and Nyquist response of MMWCNT interconnects. The results show that by increasing the length and diameter of the tubes, the delay of the interconnects is increased and its stability is increased too.

کلیدواژه‌ها [English]

  • mixed multiwall carbon nanotubes
  • circuit model
  • transfer matrix model
  • time response
  • nyquist response
1[ مهناز ذاکری، امید افضل نژاد، "بررسی اثر زاویه کایرال بر کمانش محوری و پیچشی نانولوله های کربنی تک جداره به کمک روش اجزا محدود"، نشریه مدل‌سازی در مهندسی، دوره 15 ، شماره 48 ، بهار 1396، صفحه 61.
]2[ بهروز عبدی تهنه، علی نادری، " ساختار جدید ترانزیستور اثر میدانی نانو لوله کربنی تونل زنی با دوپینگ خطی در ناحیه درین: شبیه‌سازی عددی کوانتومی"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 10.
 
]3[سعید روحی؛ یونس علیزاده، رضا انصاری، " بررسی خواص مکانیکی پلی وینیل پیرولیدون تقویت شده با نانولوله های کربنی تک جداره با استفاده از روش شبیه سازی دینامیک مولکولی و مدلسازی المان محدود"، نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 30.
 
 [4] P. Songjie Zh. ZhongliangPan, “Bandwidth expanding technology for dynamic crosstalk aware single-walled and multi-walled carbon nanotube bundle interconnects” Microelectronics Journal, Vol. 78, August 2018, pp. 101-113.
 
[5] A. Todri Sanial, J.  Dijon, A. Maffucci, Carbon nanotubes for interconnects, process, design and applications, 1st ed., Springer, CNRS-LIRMM/University of Montpellier, France, 2016.
 
[6] R. S. Ruoff, “Strong bundles based on carbon nanotubes”, Nature Nanotechnology, Vol. 13, 2018, pp. 533–534.
 
[7] M. A. Salama, R. Burkb, “Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol”, Arabian Journal of Chemistry, Vol. 10, No. 1, February 2017, pp. S921-S927.
 
[8] P. K. Tripathi, Sh. Durbach, and N. J. Coville, “Synthesis of multi-walled carbon nanotubes from plastic waste using a stainless-steel CVD reactor as catalyst” Nanomaterials, Vol. 7, Issue 10, 2017.
[9] R. Andrews, D. Jacques, D. Qian, and T. Rantell, “Multiwall Carbon Nanotubes:  Synthesis and Application”, Acc. Chem. Res., Vol 35, No. 12, 2002, pp. 1008-1017.
[10] T. Tang, X. Chen, X. Meng, H. Chen, Y. Ding,  “Synthesis of Multiwalled Carbon Nanotubes by Catalytic Combustion of Polypropylene”, Angew. Chem., Vol.  117, 2005, pp.  1541 –1544.
[11] K. T. Chaudhary, Z. H. Rizvi, K. A. Bhatti, J. Ali, and P. P. Yupapin, “Multiwalled Carbon Nanotube Synthesis Using Arc Discharge with Hydrocarbon as Feedstock”, Journal of Nanomaterials, Vol. 2013, 2013, No. 105145, pp. 1-13.
[12] A. Oyewemi, A. S. Abdulkareem, J. O. Tijani, M. T. Bankole, O. K. Abubakre, A. S. Afolabi, W. D. Roos, “Controlled Syntheses of Multi-walled Carbon Nanotubes from Bimetallic Fe–Co Catalyst Supported on Kaolin by Chemical Vapour Deposition Method” Arabian Journal for Science and Engineering, Vol. 2019, 2019, pp 1–22.
 
[13] A. A. Vyas, Ch. Zhou, P. Wilhite, Ph. Wang, C. Y. Yang, “Electrical properties of carbon nanotube via interconnects for 30 nm linewidth and beyond” Microelectronics Reliability, Vol. 61, June 2016, pp. 35-42.
 
[14] Zh. Xiao, J. Elike, A. Reynolds, R. Moten, X. Zhao, “The fabrication of carbon nanotube electronic circuits with dielectrophoresis” Microelectronic Engineering, Vol. 164, October 2016, pp. 123-127.
 
[15] K. Singh, B. Raj, “Influence of temperature on MWCNT bundle, SWCNT bundle and copper interconnects for nanoscaled technology nodes” Journal of Materials Science: Materials in Electronics, Vol. 26, August 2015, pp. 6134–6142.
 
[16] Y. Feng, T. Inoue, H. An, R. Xiang, Sh. Chiashi, and Sh. Maruyama, “Quantitative study of bundle size effect on thermal conductivity of single-walled carbon nanotubes” Applied Physics Letters, Vol. 112, Issue 19, 2018.
 
[17] M. K. Samani, N. Khosravian, G. C. K. Chen, M. Shakerzadeh, D. Baillargeat, B.K. Tay, “Thermal conductivity of individual multiwalled carbon nanotubes” International journal of thermal sciences, Vol. 62, December 2012, pp. 40-43.
 
[18] A. Naeemi A, J. Meindl “Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems,” IEEE Trans Electron Dev., Vol. 55, No. 10, 2008 , pp. 2574–82.
 
[19] D. Fathi, B. Forouzandeh “A novel approach for stability analysis in carbon nanotube interconnects,” IEEE Electron Dev. Lett, Vol. 30, No. 5, 2009,  pp. 475–477.
 
[20] H. Li, W. Y. Yin, K. Banerjee, JF. Mao, “Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects,” IEEE Transaction on Electron Dev., Vol. 55, Issue 6, June 2008, pp. 1328 - 1337.
[21] S. Haji-Nasiri, R. Faez, M. K. Moravvej-Farshi, “Stability analysis in multiwall carbon nanotube bundle interconnects”, Microelectronics Reliability, Vol. 52, Issue 12, 2012, pp. 3026–3034.
 
[22] A. Maffucci, S. A. Maksimenko, G. Mian, G. Ya. Slepyan, “Electrical Conductivity of Carbon Nanotubes: Modeling and Characterization” 1st ed., Springer, Cham, USA, 2016.
 
[23] M. Sharma, M. Kumar Rai and R. Khanna, “Performance Analysis of Mixed Carbon Nano Tubes as VLSI Interconnects”, Indian Journal of Science and Technology, Vol 10, Issue 16, April 2017.
 
[24] M. Tang, J. Mao, “Modeling and Fast Simulation of Multiwalled Carbon Nanotube Interconnects”, IEEE Transactions on Electromagnetic Compatibility, Vol. 57, Issue 2, April 2015, pp. 232 – 240.
 
[25] V. Ramesh Kumar, B. Kumar Kaushik, A. Patnaik, “Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique” Microelectronics Reliability, Vol. 55, January 2015, pp. 155-163.
 
[26] S. H. Nasiri, M. K. Moravvej-Farshi, and R. Faez, "Stability Analysis in Graphene Nanoribbon Interconnects," IEEE Electron Device Lett., Vol. 31, No. 12, 2010, pp. 1458-1460.
 
[27] S. Haji Nasiri, M. K. Moravvej-Farshi and R. Faez, “Time Domain Analysis of Graphene Nanoribbon Interconnects Based on Transmission Line Model,” Iranian Journal of Electrical & Electronic Engineering, Vol. 8, No. 1, 2012, pp 37-44.
 
[28] S. Fotoohi, S. Haji-Nasiri, “Transfer matrix model of multilayer graphene nanoribbon interconnects”, Microelectronics Reliability, Vol. 79, 2017, pp. 193–200.
 
[29] S. Haji-Nasiri, M.K. Moravvej-Farshi, R. Faez, A seamless-pitched graphene nanoribbon field effect transistor, Physica E,  Vol.74, 2015, pp. 414–418.
 
[30] S. Haji-Nasiri and M. K. Moravvej-Farshi, “Stability Analysis in CNTFETs”, IEEE Electron Device Lett., Vol. 34, No. 2, 2013, pp. 301-303.
 
[31] International Technology Roadmap for Semiconductors (ITRS), 2015, http://www.itrs.net.
 
[32] R. C. Dorf, R. H. Bishop, Modern Control System, 13th ed., Pearson Education, Inc., USA, 2017.