حل مسئله‌ طرح توسعه‌ شبکه‌ انتقال به‌منظور کاهش اثرات نامطلوب خرابی آبشاری با رویکرد تحلیل و ارزیابی آسیب‌پذیری شبکه‌های انتقال

نوع مقاله : مقاله برق

نویسندگان

1 عضو هیات علمی گروه مهندسی برق- دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 دانشجوی دکتری، گروه مهندسی برق، دانشکده مهندسی، دانشگاه کردستان

3 دانشگاه علم و صنعت ایران

چکیده

در سال‌های اخیر، مسئله‌ی طرح توسعه‌ شبکه‌های انتقال به‌منظور کاهش اثرات نامطلوب خرابی آبشاری به‌عنوان یکی از مسائل مهم در بحث طراحی و برنامه‌ریزی شبکه‌های قدرت مطرح شده است. حل مسئله‌ی طرح توسعه‌ی شبکه‌ی قدرت با هدف کاهش اثرات نامطلوب خرابی آبشاری با استفاده از رویکرد تحلیل و ارزیابی باعث می‌شود که اثرات نامطلوب خرابی آبشاری به‌صورت مؤثرتری نسبت به رویکرد بهینه‌سازی کاهش یابد. رویکرد تحلیلی یک مجموعه از مستعدترین خطوط را تشکیل داده و احداث خطوط موازی با تمام اعضای مجموعه‌ی خطوط مستعد خرابی آبشاری را به‌عنوان طرح توسعه شبکه معرفی می‌کند. اما احداث همزمان یک خط موازی به ازای تمام اعضای موجود در مجموعه‌ی مستعدترین خطوط، طرحی غیر فنی و غیراقتصادی است. در این مقاله تلاش می‌شود به‌منظور پیشنهاد طرح توسعه شبکه انتقال به‌صورت فنی و اقتصادی، با استفاده از تحلیل عواقب نامطلوب خرابی آبشاری، خط مستعد خرابی آبشاری شناسایی شده و از طریق آن و راهبرد یک شین دورتر، ناحیه‌ی آسیب‌پذیر شناسایی می‌شود. طرح‌های مختلف از توسعه‌ی شبکه‌ی انتقال در ناحیه‌ی آسیب‌پذیر برنامه‌ریزی‌شده و استحکام‌بخشی هر طرح توسعه با استفاده از معیار استحکام‌بخشی پیشنهادی مورد ارزیابی و اولویت‌بندی قرار می‌گیرد. رویکرد پیشنهادی در طرح توسعه‌ی شبکه‌ی انتقال بر روی سیستم قدرت آزمون 39 شین آزمایش شده و نتایج عددی، توانایی روش پیشنهادی در کاهش اثرات نامطلوب خرابی آبشاری را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Solving Transmission Expansion Planning problem to Mitigate Cascading Failure Impacts using Transmission Network Vulnerability Analysis and Assessment approach

نویسندگان [English]

  • Ali Hesami Naghshbandy 1
  • Saber Armaghani 2
  • S. Mohammad Shahrtash 3
1 Department of Electrical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran.
2 PhD student, Department of Electrical Engineering, Faculty of Engineering, University of Kurdistan.
3 Iran University of Science & Technology
چکیده [English]

In Recent years, it has been mentioned that the Transmission Expansion Planning is an effective way to mitigate the cascading failure impacts in transmission network. Also, solving transmission expansion planning with cascading failure issues via analytical and assessment approach instead of optimization approach causes that the impacts of cascading failure are more effectively mitigated. The Analytical and assessment approach offers a set of critical lines as a suitable candidate placement of new lines. However, installing new lines for all of elements of the set of critical line is an impractical and uneconomical way. In order to overcome this drawback, a new method is proposed in this paper. The proposed method is based on introducing a vulnerable area in transmission network instead of providing a set of critical lines. The vulnerable area is provided via finding the most vulnerable line and considering a bus farther way (adjacent bus) strategy. All of possible transmission expansion plan at this area are considered to find the best transmission expansion plan. Moreover, a transmission network solidification index based on transmission network vulnerability index is proposed in this paper to rank the possible transmission expansion plans at the vulnerable area. The efficiency and feasibility of the proposed method is investigated at IEEE 39-Bus test system. The numerical results show that using the proposed approach is able to mitigate cascading failure impacts in transmission network.

کلیدواژه‌ها [English]

  • Cascading Failure Analysis
  • Vulnerable Area Identification
  • Transmission Network Strengthen Index
  • Transmission Network Expansion Planning
 
[1] UC. Force, S. Abraham, Final Report on the August 14, 2003 Blackout in the United States and Canada: Causes and Recommendations, US-Canada Power System Outage Task Force, Canada, 2004.
[2] NE. Ferc, Arizona-southern California outages on 8 September 2011: causes and recommendations, FERC and NERC, USA, 2012.
[3] JJ. Romero, "Blackouts illuminate India's power problems", IEEE spectrum, Vol. 49, NO. 10, October 2012, pp. 11-12.
[4] M. Eremia, M. Shahidehpour, Handbook of electrical power system dynamics: modeling, stability, and control, 1th ed., John Wiley & Sons, NJ, USA, 2013.
[5] مهدی درفشیان مرام، نیما امجدی، " جلوگیری از رخداد ناپایداری گذرا و ولتاژ با استفاده از طرح اقدامات اصلاحی مبتنی بر قطع تولید و خذف بار"، دوره 14، شماره 47، پاییز1395، صفحه 137-150.
[6] مسعود احمدی گرجی، نیما امجدی، "برنامه‌ریزی توسعه‌ی پویایی شبکه‌های توزیع در حضور منابع تولید پراکنده با استفاده از الگوریتم بهینه‌سازی جدید دو سطحی"، دوره 14، شماره 44، بهار 1395، صفحه 143-157.
[7] N. Amjady, A. Attarha, S. Dehghan, AJ. Conejo, "Adaptive robust expansion planning for a distribution network with DERs", IEEE Transactions on Power Systems, Vol. 33, No.2, March 2018, pp. 1698-1715.
[8] A. Hajebrahimi, A. Abdollahi, M. Rashidinejad, "Probabilistic multi-objective transmission expansion planning incorporating demand response resources and large-scale distant wind farms", IEEE Systems Journal, 2017 Jun, Vol. 11, No. 2, January 2017, pp. 1170-1181.
[9] S. Abbasi, H. Abdi, "Robust Transmission Network Expansion Planning (IGDT, TOAT, Scenario Technique Criteria)", InRobust Optimal Planning and Operation of Electrical Energy Systems, February 2019, pp. 199-218.
[10] شهاب دهقان، نیما امجدی، " برنامه‌ریزی غیر قطعی توسعه‌ی چند ساله‌ی سیستم قدرت با در نظر گرفتن مزرعه‌های بادی به کمک ترکیب برنامه‌ریزی تصادفی و معیار حداقل-حداکثر پشیمانی" دوره 14، شماره 47، زمستان 1395، صفحه‌ی 41-50.
[11] A. Arabali, M. Ghofrani, M. Etezadi-Amoli, MS. Fadali, M. Moeini-Aghtaie, "A multi-objective transmission expansion planning framework in deregulated power systems with wind generation", IEEE Transactions on Power Systems, Vol. 29, No. 6, November 2014, pp. 3003-3011.
[12] ID. Silva, MJ. Rider, R. Romero, AV. Garcia, CA. Murari, "Transmission network expansion planning with security constraints", IEE Proceedings-Generation, Transmission and Distribution. Vol. 152, No. 6, November 2005, pp. 828-836.
[13] A. Moreira, A. Street, JM. Arroyo, "An adjustable robust optimization approach for contingency-constrained transmission expansion planning", IEEE Transactions on Power Systems, Vol. 30, No. 4, July 2015, pp. 2013-2022.
[14] E. Mortaz, LF. Fuerte-Ledezma, G. Gutiérrez-Alcaraz, J. Valenzuela, "Transmission expansion planning using multivariate interpolation", Electric Power Systems Research, Vol. 1, No. 126, September 2015, pp. 87-99.
[15] X. Zhang, K. Tomsovic, A. Dimitrovski, "Security constrained multi-stage transmission expansion planning considering a continuously variable series reactor", IEEE Transactions on Power Systems, Novamber 2017, Vol. 32, No.6, pp.4442-4450.
[16] M. Peker, AS. Kocaman, BY. Kara, "A two-stage stochastic programming approach for reliability constrained power system expansion planning", International Journal of Electrical Power & Energy Systems, Vol. 103, December 2018, pp. 458-69.
[17] M. Carrión, JM. Arroyo, N. Alguacil, "Vulnerability-constrained transmission expansion planning: A stochastic programming approach", IEEE Transactions on Power Systems, November 2007, Vol. 22, No. 4, pp. 1436-1445.
[18] A. Moreira, A. Street, JM. Arroyo, "An adjustable robust optimization approach for contingency-constrained transmission expansion planning", IEEE Transactions on Power Systems, Vol. 30, No. 4, July2015, pp. 2013-2022.
[19] S. Hong, H. Cheng, P. Zeng, "N-K constrained composite generation and transmission expansion planning with interval load", IEEE Access. Vol. 5, February 2017, pp. 2779-2789.
[20] Z. Wu, Y. Liu, W. Gu, Y. Wang, C. Chen, "Contingency-constrained robust transmission expansion planning under uncertainty", International Journal of Electrical Power & Energy Systems, Vol. 101, October 2018, pp.331-338.
[21] J. Shortle, S. Rebennack, FW. Glover, "Transmission-capacity expansion for minimizing blackout probabilities", IEEE Transactions on Power Systems, Vol. 29, September 2014, pp.43-52.
[22] E. Karimi, A. Ebrahimi, "Inclusion of blackouts risk in probabilistic transmission expansion planning by a multi-objective framework", IEEE Transactions on Power Systems, Vol. 30, No. 5, September 2015, pp. 2810-2817.
[23] C. Luo, J. Yang, Y. Sun, J. Yan, H. He, "Identify critical branches with cascading failure chain statistics and hypertext-induced topic search algorithm", InPower & Energy Society General Meeting, 2017 IEEE, Chicago, July 2017, pp. 1-5.
[24] PD. Hines, I. Dobson, P. Rezaei, "Cascading power outages propagate locally in an influence graph that is not the actual grid topology", IEEE Transactions on Power Systems, Vol. 32, No. 2, March 2017, pp. 958-967.
[25] H. Bai, S. Miao, "Hybrid flow betweenness approach for identification of vulnerable line in power system" IET Generation, Transmission & Distribution. Vol. 9, No.12, September 2015, pp.1324-1331.
[26] F. Wenli, L. Zhigang, H. Ping, M. Shengwei, "Cascading failure model in power grids using the complex network theory", IET Generation, Transmission & Distribution. Nonmember 2016, Vol. 10, No. 15, pp.3940-3949.
[27] S. Poudel, Z. Ni, W. Sun, "Electrical distance approach for searching vulnerable branches during contingencies", IEEE Transactions on Smart Grid, Vol. 9, No.4, July 2018, pp.3373-3382.
[28] K. Lai, Y. Wang, D. Shi, MS. Illindala, X. Zhang, Z. Wang, "A Resilient Power System Operation Strategy Considering Transmission Line Attacks", IEEE Access, Vol. 6, October 2018, pp.70633-70643.
[29] A. Wang, Y. Luo, G. Tu, P. Liu, "Vulnerability assessment scheme for power system transmission networks based on the fault chain theory", IEEE Transactions on power systems, February 2011; Vol. 26, No.1, pp.442-450.
[30] J. Yan, Y. Tang, H. He, Y. Sun, "Cascading failure analysis with DC power flow model and transient stability analysis", IEEE Transactions on Power Systems, Vol.30, No.1, January 2015, pp.285-297.
[31] J. Qi, K. Sun, S. Mei, "An interaction model for simulation and mitigation of cascading failures," IEEE Transactions on Power Systems, March 2015, Vol. 30, No.2, pp.804-819.
[32] W. Ju, K. Sun, J. Qi, "Multi-layer interaction graph for analysis and mitigation of cascading outages", IEEE Journal on Emerging and Selected Topics in Circuits and Systems, June 2017, Vol. 7, No.2, pp.239-249.
[33] X. Wei, S. Gao, T. Huang, E. Bompard, R. Pi, T. Wang, "Complex Network Based Cascading Faults Graph for the Analysis of Transmission Network Vulnerability", IEEE Transactions on Industrial Informatics, Early Access, May 2018.
[34] . Song, E. Cotilla-Sanchez, G. Ghanavati, PD. Hines, "Dynamic modeling of cascading failure in power systems", IEEE Transactions on Power Systems, Vol. 31, NO. 3, May 2016, pp. 2085-2095.
[35] W. Ju, K. Sun, R. Yao, "Simulation of cascading outages using a power-flow model considering frequency", IEEE Access, Vol. 6, June 2018, pp. 37784-37795.
[36] R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, S. Mei, "A multi-timescale quasi-dynamic model for simulation of cascading outages", IEEE Transactions on Power Systems, Vol. 31, No. 4, July 2016, pp.3189-3201.
[37] He M, Zhang J, Vittal V. "Robust online dynamic security assessment using adaptive ensemble decision-tree learning", IEEE Transactions on Power systems, Vol. 28, No. 4, November 2013, pp. 4089-4098.
[38] A. Moeini, I. Kamwa, M. de Montigny, L. Lenoir. "Application of Battery Energy Storage for network vulnerability mitigation", in Transmission and Distribution Conference and Exposition (T&D), 2016 IEEE/PES May 2016.
[39] S. Mei, Y. Ni, G. Wang, S. Wu, "A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin", IEEE Transactions on Power Systems, Vol. 23, NO. 4, November 2008, pp. 1719-1726.
[40] Matpower Home Page, Online: "www.Pserc.cornell.edu/matpower."
[41] S. Cole, R. Belmans, "Matdyn, a new Matlab-based toolbox for power system dynamic simulation", IEEE Transactions on Power systems, Vol. 26, NO. 3, August 2011, pp. 1129-1136.
[42] A Pai, Energy function analysis for power system stability, Springer Science & Business Media; 1th ed., Germany, 2012.