اثر مدل توربولانس بر شبیه سازی عددی جریان آشفته نانوسیال در یک لوله افقی

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مکانیک، دانشکده فنی مهندسی، دانشگاه صنعتی قم، قم، ایران.

2 گروه مکانیک، دانشکده فنی- مهندسی، دانشگاه صنعتی قم، قم، ایران

چکیده

با توجه به کاربرد روز افزون استفاده از نانوسیال به عنوان سیال عامل خنک کننده و همچنین گسترش مدل سازیهای عددی به منظور کاهش زمان و هزینه طراحی، در این پژوهش، جریان مغشوش نانوسیال آب- اکسید سیلیسیم و آب- اکسید مس برای دو شرایط مختلف در یک لوله افقی تحت شار حرارتی ثابت به صورت عددی شبیه سازی شده است. برای مدلسازی جریان آشفته، چندین مدل توربولانس دو معادله ای و یک مدل تنش رینولدز موجود در نرم افزار فلوئنت با هدف بررسی عملکرد آنها مورد استفاده قرار گرفته است. همچنین تخمین خواص ترموفیزیکی نانوسیال با استفاده از رویکرد تک فاز انجام گرفته است. برای آگاهی از مقادیر خطای حاصل از شش مدل توربولانس مورد استفاده، نتایج به دست آمده در مطالعه حاضر با داده های آزمایشگاهی مقایسه شده اند تا بتوان در نهایت مدل توربولانسی که تطابق بهتری با داده های آزمایشگاهی در طیف وسیع تری از شرایط جریان دارد را مشخص کرد. به همین منظور بیش از 500 اجرا در اعداد رینولدز مختلف، کسر حجمی های مختلف برای دو عدد بدون بعد ناسلت و ضریب اصطکاک انجام شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Turbulence Model on Numerical Simulation of Turbulent Flow of Nanofluids in a Horizontal Pipe

نویسندگان [English]

  • Sajjad Eslami 1
  • Mahdi Mohseni 2
1 Department of Mechanical Engineering, Qom University of Technology, Qom, Iran.
2 Department of Mechanical Engineering, Qom University of Technology, Qom, Iran
چکیده [English]

One of the main techniques in the enhancement of heat transfer during recent decades is utilization of nanofluids. In this study, the forced convective turbulent flow of CuO-H2O and SiO2-H2O nanofluids have been numerically investigated. The results obtained for two different conditions in a horizontal tube under constant wall heat flux. In order to investigate the performance of turbulence models, various two-equation turbulence models as well as one Reynolds stress model, exist in ANSYS-FLUENT package, are used to modeling the turbulent flow. The single phase approach also, is used to estimte the thermo physical properties of the nanofluids. The Nusselt number or equivalently the heat transfer coefficient, and the friction factor are calculated in fully developed region of the flow. The experimental data are also used for the sake of comparison and to find which turbulence models has the best performance. To accomplish this, more than 500 runs have been carried out for various Reynolds number as well as different volume fractions up to 4 percent for two dimensionless number of Nusselt and friction factor.

کلیدواژه‌ها [English]

  • Nanofluid
  • turbulent flow
  • turbulence model
  • convective heat transfer
  • Numerical Solution
[1]           S. K. Naghibzadeh, M. R. Hajmohammadi, M. Saffar-Avval, Heat transfer enhancement of a nanofluid in a helical coil with flattened cross-section, Chemical Engineering Research and Design, Vol. 146,  2019, pp. 36-47.
[2]           K. Rahbar, A. Riasi, H. K. Bolouri, N. Razmjoo, Heat recovery of nano-fluid based concentrating Photovoltaic Thermal (CPV/T) Collector with Organic Rankine Cycle, Energy Conversion and Management, Vol. 179, 2019, pp. 373-396.
[3]           V. Corumlu, A. Ozsoy, M. Ozturk, Evaluation of Heat Transfer Mechanisms in Heat Pipe Charged with Nanofluid, Arabian Journal for Science and Engineering, https://doi.org/10.1007/s13369-019-03742-9.
[4]           S. Maiga, C. Nguyen, N. Galanis, G. Roy, T. Mare, and M. Coqueux, "Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension", International Journal of Numerical Methods Heat Fluid Flow, Vol. 16, 2006, pp. 275–292.
[5]           K. Khanafer, and K. Vafai, "A critical synthesis of thermophysical characteristics of nanofluids", International Journal of Heat and Mass Transfer, Vol. 54, 2011, pp. 4410–4428.
[6]           M. Jalal, H. Meisami, and M. Pouyagohar, "Investigation of Titania/Water Nanofluid Viscousity, Density and Pressure Drop in Circular Channel", World Applied Sciences Journal Vol. 27, No. 8, 2013, pp. 1037-1041.
[7]           محمد همت اسفه، مجتبی بیگلری، سیف الله سعدالدین و سیدهادی رستمیان، "ارزیابی تجربی خواص ترموفیزیکی، انتقال حرارت جابجایی و افت فشار در نانوسیال آب- نانولوله کربنی چند جداره عامل دار شده"، مجله مدل‌سازی در مهندسی، دوره 15، شماره 48، بهار 1396، صفحه 73-84.
[8]           مسعود ضیائی راد و مریم بیگی هرچگانی، "مطالعه عددی انتقال حرارت و افت فشار در جریان اجباری نانوسیال داخل لوله‌‌ دندانه‌دار"، مجله مدل‌سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 65-76.
[9]           M.H. Kayhani, M. Nazari, H. Soltanzadeh, M.M. Heyhat, and F. Kowsary, "Experimental analysis of turbulent convective heat transfer and pressure drop of Al2O3/water nanofluid in horizontal tube", Micro and Nano Letters, Vol. 7, 2012, pp. 223–227.
[10]        محمد شریفی اصل، داود طغرایی و احمد رضا عظیمیان، " شبیه سازی عددی انتقال حرارت جابه جایی در جریان مغشوش غیرنیوتنی نانوسیال در یک لوله افقی مدور"، مجله مدل‌سازی در مهندسی، دوره 16، شماره 53، تابستان 1397، صفحه 10-10.
[11]        M. Corcione, M. Cianfrini, and A. Quintino, "Heat transfer of nanofluids in turbulent pipe flow", International Journal of Thermal Sciences, Vol. 56, 2012, pp. 58–69.
[12]        Davarnejad et al., CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube", Springer Plus 2013 2:192.
[13]        G. Saha, and M.C. Paul, "Heat transfer and entropy generation of turbulent forced convection flow of nanofluids in a heated pipe", International Communications in Heat and Mass Transfer, Vol. 61, 2014, pp. 26-36.
[14]        A. Aghaei et al., "Numerical investigation of turbulent forced-convective heat transfer of Al2O3–water nanofluid with variable properties in tube", Ain Shams Engineering Journal, Vol. 6, 2015, pp. 577-585.
[15]        F. Hatami, and F. Okhovati, "Analysis of turbulent flow of nanofluids in a pipe", European Online Journal of Natural and Social Sciences, Vol. 3, 2014, pp. 72-85.
[16]        M. Hejazian, M. Keshavarz, and A. Beheshti, "Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube", International Communications in Heat and Mass Transfer, Vol. 52, 2014, pp. 152–158.
[17]        I. Behroyan, P. Ganesana, S. Sivasankaran, and S. Heb, "Turbulent forced convection of Cu/water nanofluid, CFD model comparison, International Communications in Heat and Mass Transfer, Vol. 67, 2015, pp. 163–172.
[18]        N. Kumar, and B.P. Puranik, "Numerical study of convective heat transfer with nanofluids in turbulent flow using a Lagrangian-Eulerian approach", Applied Thermal Engineering, Vol. 111, 2016, pp. 1674-1681.
[19]        H. Shabgard, S. Kheradmand, H. Farzaneh, and C. Bae, "Numerical simulation of cooling performance of an exhaust gas recirculation (EGR) cooler using nano-fluids", Applied Thermal Engineering, Vol. 110, 2017, pp. 244–252.
[20]        L. Zheng, Y. Xie, and D. Zhang, "Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid", International Journal of Heat and Mass Transfer, Vol. 111, 2017, pp. 962–981.
[21]        A. M. Fsadni, J. P.M. Whitty, M. A. Stables, and A. A. Adeniyi, "Numerical study on turbulent heat transfer and pressure drop characteristics of a helically coiled hybrid rectangular-circular tube heat exchanger with Al2O3- water nanofluids", Applied Thermal Engineering, Vol. 114, 2017, pp. 466–483.
[22]        C.J. Ho a, C.Y. Chang a, Wei-Mon Yan b, Pouria Amani, "A combined numerical and experimental study on the forced convection of Al2O3-water nanofluid in a circular tube", International Journal of Heat and Mass Transfer, Vol. 120, 2018, pp. 66–75.
[23]        A. A. Minea, "Challenges in hybrid nanofluids behavior in turbulent flow: Recent research and numerical comparison", Renewable and Sustainable Energy Reviews, Vol. 71, May 2017, pp. 426-434.
[24]        M. Sheikholeslami, M. Jafaryar, and Z. Li, "Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators", Journal of Molecular Liquids, doi:10.1016/j.molliq.2018.04.147.
[25]        A. Safari, M. Saffar-Avval, and E. Amani, "Numerical investigation of turbulent forced convection flow of nano fluid in curved and helical pipe using four-equation model", Powder Technology, 2018, doi:10.1016/j.powtec.2018.01.025.
[26]        A. H. Abdelrazek, O. A. Alawi, S.N. Kazi, N. Yusoff, Z. Chowdhury, A. A.D. Sarhan, "A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop", International Communications in Heat and Mass Transfer, Vol. 95, 2018, pp. 161–170.
[27]        H. Esmaeili, T. Armaghani, A. Abedini, I. Pop, Turbulent combined forced and natural convection of nanofluid in a 3D rectangular channel using two-phase model approach, Journal of Thermal Analysis and Calorimetry, https://doi.org/10.1007/s10973-018-7471-9
[28]        W.H. Azmi, K.V. Sharma, P.K. Sarma, R. Mamat, Anuar, S., Dharma Rao V. "Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid", Experimental Thermal and Fluid Science, Vol. 51, 2013, pp. 103–111.
[29]        B. Sahin, E. Manay, E. F. Akyurek, "An Experimental Study on Heat Transfer and Pressure Drop of CuO-Water Nanofluid", Journal of Nanomaterials, Vol. 2015, Article ID 790839,10 pages, http://dx.doi.org/10.1155/2015/790839
[30]        A. Bejan, Convection Heat Transfer, 4th edition, John Wiley & Sons, 2013.
[31]        B.S. Petukhov, "Heat transfer and friction in turbulent pipe flow with variable physical properties", In: Hartnett JP, Irvine TF, editors. Advances in Heat Transfer, New York: Academic Press (1970) 504–64.
[32]        B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer, Vol. 11, 1998, pp. 151-170.
[33]        Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of Heat Mass Transfer, Vol. 43, 2000, pp. 3701-3707.
[34]        Yu, W., Choi, S.U.S., "The role of interfacial layers in the enhanced thermal conductivity of nanofluids, a renovated Maxwell model", Journal of Nanoparticle Research, Vol. 5, 2003, pp. 167.