تحلیل پاسخ زمانی و نایکوئیست لیزر خودسامانده نقطه کوانتومی InGaAs-GaAs با استفاده از مدل تابع انتقال

نوع مقاله : مقاله برق

نویسنده

گروه الکترونیک، دانشکده مهندسی برق، رایانه و مهندسی پزشکی، دانشگاه آزاد اسلامی واحد قزوین

چکیده

با استفاده از معادلات نرخ لیزر خود سامانده نقطه کوانتومی ایندیم گالیم آرسناید - گالیم آرسناید، تابع انتقال این نوع لیزر استخراج و ارائه می شود بطوریکه با بهره گیری از آن می توان انواع تحلیلهای حوزه زمان و پایداری در حوزه فرکانس را انجام داد. در حوزه زمان، تابع انتقال ارائه شده رفتار حالت گذرا و دائمی لیزر را به صورت یکجا محاسبه می کند. همچنین این تابع انتقال می تواند در شبیه سازهای مداری نظیر اسپایس جهت شبیه سازی مدارات الکترواپتیکی با مقیاس بزرگ استفاده شود.
پس از استخراج تابع انتقال مذکور، پاسخ حوزه زمان لیزر خود سامانده نقطه کوانتومی و دیاگرامهای پایداری نایکوئیست آن محاسبه شدند. در این دیاگرامها اثر تغییر رفتار دینامیک حاملها بر روی پاسخ خروجی لیزر بررسی شده است. نتایج حاصل از تابع انتقال ارائه شده نشان می دهد افزایش طول عمر آرامش حاملها باعث کاهش دامنه نوسانات گذرا و پایداری نایکوئیستی بیشتر و افزایش زمان بازترکیب در نقطه و چاه کوانتومی لیزر باعث افزایش دامنه نوسانات و پایداری نایکوئیستی کمتر در توان خروجی آن می شود. بر خلاف سیستمهایی نظیر خطوط ارتباطی و ترانزیستورها که پاسخ حوزه زمان و پایداری نایکوئیستی در آنها قبلا بررسی شده است، نتایج به دست آمده نشان می دهد در لیزر خود سامانده نقطه کوانتومی نسبت پیک توان خروجی در حالت گذرا به توان حالت پایدار بسیار بزرگ است. هر یک از این پیکها در توان خروجی لیزر می تواند ورودی مدار بعدی متصل به لیزر را دچار آسیب و یا سردرگمی منطقی کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Time Domain and Nyquist Analysis of InGaAs-GaAs Semiconductor Self-Assembled Quantum Dot Lasers Based on Transfer Matrix Method

نویسنده [English]

  • saeed haji-nasiri
Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
چکیده [English]

AAbstract:
Transfer function of the InGaAs/GaAs SAQD laser is calculated using its rate equations. Using the calculated transfer function, time and frequency analysis can be implemented completely. In the time domain, the calculated transfer function can show the transient and steady state response of the laser. Also this transfer function can be used in circuit simulator such as SPICE in order for analyzing the electro-optical VLSI circuits.
After the calculation of the transfer function, time domain together with Nyquist responses has been calculated. The effect of carrier dynamics on the output response of the laser is analyzed in this case. Nyquist diagram is selected in this analysis because one can predict the closed loop system using the open loop system.
Unlike the systems such as interconnects and transistors that are analyzed before, the results reveal that in SAQDLs, the ratio of the transient peak overshoot in the output power to stable output power is very large. Accordingly in integrated circuits that use SAQDLs, amplification of each overshoots in output power of the laser can deteriorate the input of the next circuit module on the chip or shock to it. This increases the importance of the stability analysis in SAQDLs for more reliability.

کلیدواژه‌ها [English]

  • SAQD laser
  • transfer function
  • stability
]1[ محمد آسیایی، "طراحی رجیستر فایل توان- پایین در فناوری 90 نانومتر CMOS"، مجله مدل سازی در مهندسی، دوره 16، شماره 54، پاییز 1397، صفحه 5-11.
]2[ سعید علیائی، احمد محب زاده، "طراحی و مدل سازی حسگر زیستی مبتنی بر نانو تشدیدگر کریستال فوتونی"، مجله مدل سازی در مهندسی، دوره 15، شماره 51، زمستان 1396، صفحه 351-358.
 
]3[ بهروز عبدی تهنه، علی نادری، "ساختار جدید ترانزیستور اثر میدانی نانو لوله کربنی تونل زنی با دوپینگ خطی در ناحیه درین: شبیه‌سازی عددی کوانتومی"، مجله مدل سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 10-17.
 
[4] M. Kashiri and A. Asgari, "Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers", Applied optics, Vol. 55, No. 8, 2016, pp. 2042-2048.
 
[5] M. H. Yavari and V. Ahmadi, "Circuit-level implementation of semiconductor self-assembled quantum dot laser", IEEE journal of selected topics in quantum electronics, Vol. 15, No. 3, 2009, pp. 774-779.
 
[6] M. Grundmann, Nano-optoelectronics, concepts, physics and devices, Springer-Verlag , 1st  ed., New York, USA, 2002.
 
[7] D. Bimberg, M. Grundmann, and N. N. Ledenstov, Quantum dot hetrostructures., John-Wiley, 1st  ed., New York, USA, 1999.
 
[8] Zh. Lin, G. Yuan, M. Yang, L. Guan, and Zh. Wang, "Modeling and simulation of the multi-population quantum-dot lasers based on equivalent circuit", Proceeding of SPIE 10098, Physics and simulation of optoelectronic devices XXV, San Francisco, California, United States, Vol. 10098, No. 19, 2017, pp. 1-11.
 
[9] Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten and R. A. Hogg, “1.55 µm InAs/GaAs Quantum Dots and High Repetition Rate Quantum Dot SESAM Mode-locked Laser”, Scientific Reports, Vol. 2, No. 477, 2012, pp. 1-5.
 
[10] D. Gready, G. Eisenstein, Ch. Gilfert, V. Ivanov, and J. Peter Reithmaier, “High-Speed Low-Noise InAs/InAlGaAs/InP 1.55-μm Quantum-Dot Lasers”, IEEE Photonics Technology Letters, Vol. 24, No. 10, 2012,  pp. 809-811.
 
[11] A. Y. Liu, Ch. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon” Applied Physics Letters, Vol. 104, No. 041104, 2014, pp.  1-11.
 
[12] D. Jung, J. Norman, M. J. Kennedy, Ch. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si”, Applied Physics Letters, Vol. 111, No. 122107, 2017, pp. 1-11.
 
[13] M. M. Adachi, F. Fan, D. P. Sellan, S. Hoogland, O. Voznyy, A. J. Houtepen, K. D. Parrish, P. Kanjanaboos, J. A. Malen and E. H. Sargent, “Microsecond-sustained lasing from colloidal quantum dot solids”, Nature Communications,  Vol. 6, No. 8694, 2015, pp. 1-15.
 
[14] X. Michalet, FF. Pinaud, LA. Bentolila, J. Tsay, S. Doose, JJ. Li, G. Sundaresan, AM. Wu, SS. Gambhir, S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science, Vol. 307, No. 5709, 2005, pp. 538-544.
 
[15] A. Shinde, R.A Gahlaut, and Sh. Mahamuni, “Low-Temperature Photoluminescence Studies of CsPbBr3 Quantum Dots”, Journal of Physical Chemistry, Vol. 121, No. 27, 2017, pp. 14872–14878.
 
[16] M. Z. Hu and T. Zhu, “Semiconductor Nanocrystal Quantum Dot Synthesis Approaches Towards Large-Scale Industrial Production for Energy Applications”, Nanoscale Research Letters, Vol. 10, No. 469, 2015, pp. 1-15.
 
[17] D. Piester, A. A. Ivanov, Andrey Bakin, H. H. Wehmann, “Semiconductor Nanostructures for Quantum Wire Lasers”, Proceedings of SPIE - The International Society for Optical Engineering,  Vol. 4748, 2001,  pp. 476-485.
 
[18] Ch. Shen, T. Kh. Ng, Ch. Lee, Sh. Nakamura, J. S. Speck, S. P. Denbaars, A. Y. Alyamani, M. M. EL-Desouki, and S. Boon, “Semipolar InGaN quantum-well laser diode with integrated amplifier for visible light communications”, Optics Express, Vol. 26, No. 6, 2018, pp. A219-A226.
 
 [19] P. S. Zory,” quantum well lasers”, Academic Press, Inc., University of Florida, 1993.
 
[20] M. Rosch, G. Scalari, M. Beck and J. Faist, “Octave-spanning semiconductor laser”, Nature Photonics, Vol. 9, No. 1, pp. 1-6.
 
[21] Q. Li, J. B. Wright, W. W. Chow, T. Shan Luk, I. Brener, L. F. Lester, and G. T. Wang, “Single-mode GaN nanowire lasers”, Optics Express, Vol. 20, No. 16, 2012, pp. 17873-17879.
 
[22] J. Wu, S. Chen, A. Seeds and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells”, Journal of Physics D: Applied Physics, Vol. 48, No. 36, 2015, pp. 1-28.
 
[23] W. W. Chow, F. Jahnke, “On the physics of semiconductor quantum dots for applications in lasers and quantum optics”, Progress in Quantum Electronics, Vol. 37, No. 3, 2013, pp. 109-184.
 
[24] J. Ho, J. Tatebayashi, S. Sergent, Ch. Fai Fong, Y. Ota, S. Iwamoto, and Y. Arakawa, “A Nanowire-Based Plasmonic Quantum Dot Laser”, Nano Letters, Vol 16, No. 4, 2016 pp 2845–2850.
 
[25] G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics”, Optics Express, Vol. 24, No. 14 2016, pp. 16167-16174.
 
[26] Ch. Cheng, F. Yuan, X. Cheng, "Study of an Unsaturated PbSe QD-Doped fiber laser by numerical simulation and experiment", IEEE journal of quantum electronics, Vol. 50, No. 11, 2014, pp. 1- 8.
 
[27] R. Raghunathan, Y. Li, J. K. Mee, V. Kovanis, L. F. Lester, M. Thomas Crowley, and F. Grillot, "Pulse characterization of passively mode-locked quantum-dot lasers using a delay differential equation model seeded with measured parameters", IEEE journal of selected topics in quantum electronics, Vol. 19, No. 4, 2013, pp. 1-12.
 
[28] I. V. Koryukin, "Modeling a semiconductor quantum dot laser", 2016 IEEE international conference on laser optics (LO), St. Petersburg, Russia, July 2016, pp. 1-35.
 
[29] M. Shekarpour, K. Saghafi, M. Jalali, and M. H. Yavari, "Circuit-level implementation of quantum-dot VCSEL", Optical and quantum electronics, Vol. 48, No. 355, 2016, pp. 1-13.
 
]30[ امین یاسینی، محمود شریعتی، "مدل سازی و‌ شبیه‌سازی رفتار کمانشی نانو سیم های سیلیسیم و با استفاده از روش مکانیک ساخت"، مجله مدل سازی در مهندسی، دوره 15، شماره 50، پاییز 1396، صفحه 85-93.
 
]31[ احمد محمدی، "مدل سازی نانوآنتنها با روش BOR-FDTD و بررسی تاثیر فاصله بر فلوئورسانس"، مجله مدل‌سازی در مهندسی، دوره یازدهم، شماره 32 ، بهار 1392، صفحه 57-67.
 
]32[ حسین پرهیزکار، حسین شایقی، "مدل سازی خطوط انتقال تحریک شده بر اثر اصابت صاعقه در حوزه فرکانس" ، مجله مدل سازی در مهندسی، سال پانزدهم، شماره 50 ، پاییز 1396، صفحه 237-244.
 
]33[ سعید اباذری، احمد صادق پیام، "پیاده سازی کنترلر بهینه هوشمند بر مبنای تابع انرژی لیاپانوف عناصر موازی FACTS جهت بهبود پایداری گذرا"، مجله مدل سازی در مهندسی،  دوره دوازدهم، شماره 39 ، زمستان1393، صفحه 31-43.
 
]34[ مهدی درفشیان مرام، نیما امجدی، "جلوگیری از رخداد ناپایداریهای گذرا و ولتاژ با استفاده از یک طرح اقدامات اصلاحی مبتنی بر قطع تولید و حذف بار"، مجله مدل سازی در مهندسی، دوره چهاردهم، شماره 46 ، پاییز 1393، صفحه 137-150.
 
[35] S. Haji-Nasiri, M. K. Moravvej-Farshi, and R. Faez, "Stability Analysis in Graphene Nanoribbon Interconnects", IEEE electron device letters, Vol. 31, No. 12, 2010, pp. 1458-1460.
 
[36] S. Haji-Nasiri, M. K. Moravvej-Farshi, and R. Faez, "Time domain analysis of graphene nanoribbon interconnects based on transmission line model", Iranian journal of electrical & electronic engineering, Vol. 8, No. 1, 2012, pp. 37-44.
 
[37] D. Fathi and B. Forouzandeh, "A novel approach for stability analysis in carbon nanotube interconnects", IEEE electron device letters, Vol. 30, No. 5, 2009, pp. 475–477.
 
[38] D. Fathi, B. Forouzandeh, S. Mohajerzadeh, and R. Sarvari "Accurate analysis of carbon nanotube interconnects using transmission line model", Micro and nano letters, Vol. 4, No. 2, 2009, pp.116-121.
 
[39] S. Haji-Nasiri, R. Faez, and M. K. Moravvej-Farshi, "Stability analysis in multiwall carbon nanotube bundle interconnects", Microelectronic reliability, Vol. 52, 2012, pp. 3026-3034.
 
[40] S. Haji-Nasiri and M. K. Moravvej-Farshi, "Stability analysis in CNTFETs", IEEE electron device letters, Vol. 34, No. 2, 2013, pp. 301-303.
 
[41] S. Haji-Nasiri, M. K. Moravvej-Farshi, and R. Faez, "A seamless-pitched graphene nanoribbon field effect transistor", Physica E: Low-dimensional systems and nanostructures, Vol. 74, 2015, pp. 414-420.