مدل‌سازی مکانیستیک نیروهای برش در فرزکاری با ابزار فرز انگشتی با لبه برنده مستقیم

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران

2 استادیار، دانشکده مهندسی مکانیک، واحد خمینی شهر، دانشگاه آزاد اسلامی، خمینی شهر، اصفهان، ایران

چکیده

پیش‌بینی نیروهای برش با روش‌های مدل‌سازی تحلیلی در فرآیند ماشین‌کاری از اهمیت قابل‌توجهی برخوردار است. در این پژوهش از مدل‌سازی مکانیستیک برای پیش‌بینی نیروهای برش در فرآیند فرزکاری با ابزار فرز انگشتی دو لبه با لبه برنده مستقیم استفاده گردید. این روش مدل‌سازی به دلیل عدم نیاز به آزمایش‌های پرهزینه به‌منظور دستیابی به اطلاعات رفتار ماده در فرآیند براده برداری با نرخ کرنش زیاد و عدم نیاز به تحلیل‌های زمان‌بر در نرم‌افزارهای عددی و همچنین اعمال ویژگی‌های مربوط به جنس، اصطکاک و شرایط براده برداری با ضرایب برش و لبه برنده از کارایی و دقت قابل قبولی برخوردار است. در این پژوهش برای اولین بار طراحی ویژه‌ای برای قطعه در نظر گرفته شد به‌گونه‌ای که تأثیر گردی نوک اینسرت های برش در خطای مدل‌سازی حذف گردد. نتایج مقایسه منحنی‌های نیروی برش مدل پیش‌بینی و تجربی به‌دست‌آمده از دینامومتر برای سه مؤلفه نیروی برش ، و تطابق قابل قبولی را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Mechanistic modeling of cutting forces in end milling with the direct cutting edge

نویسندگان [English]

  • Gholam Reza Juzdani 1
  • Sayed Ehsan Mirmohammadsadeghi 2
1 MSc. Student, Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
2 Assistant Professor, Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr/Isfahan, Iran
چکیده [English]

Prediction of cutting forces by analytical modeling methods in the machining process has a considerable importance. In this study, mechanistic modeling was used to predict cutting forces in milling process by two-cutting edge end mill tool with a straight cutting edge κ = 90°. This modeling approach due to no need for costly experiments to obtain material behavior information in the high strain rate cutting process and due to no need for time-consuming analysis by numerical software as well as the application of material characteristics and cutting conditions with coefficients of cutting and cutting edge have acceptable performance and accuracy. In this research, for the first time, a special design for the work piece was considered to eliminate the effect of round insert tip on modeling error. The results of comparing the predicted and experimental cutting force curves obtained from the dynamometer for the three cutting force components〖 F〗_x, F_yand F_z show acceptable agreement.〖 F〗_x, F_yand F_z show acceptable agreement.

کلیدواژه‌ها [English]

  • Mechanistic modeling
  • Cutting forces
  • End mill tool
  • Cutting straight edge
  • Coefficients of cutting and cutting edge
  • Round insert tip
]1 [محمد­رضا وزیری سرشک، محمود سلیمی و محمد مشایخی، "فرم ریاضی مدل ساختاری ماده قابل کاربرد در تحلیل رفتار پلاستیک فلزات در مدل‌­سازی ماشین­‌کاری"، نشریه مدل­‌سازی در مهندسی، دوره 10، شماره 31، زمستان 1391، صفحه 37- 48.
]2 [فرهاد حاجی­ابوطالبی و شهریار محققیان، "شبیه‌­سازی عددی فرآیند­های ماشین­‌کاری با استفاده از معیار آسیب برشی هوپیوترا"، نشریه مدل‌­سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 101- 109.
]3 [فرشید جعفریان، "تعیین ثوابت معادله جانسون کوک جهت شبیه­‌سازی فرآیند ماشین‌­کاری با استفاده از الگوریتم بهینه­‌سازی"، نشریه مدل‌­سازی در مهندسی، دوره 17، شماره 57، تابستان 1398، doi:10.22075/jme.2019.16596.1647
[4] M. Aydın, and U. Köklü, U, "Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy", Simulation Modelling Practice and Theory, (2019), doi: https://doi.org/10.1016/j.simpat.2019.102039.
[5] L. Zhou, B. Deng, F. Peng, M. Yang and R. Yan "Semi-analytic modelling of cutting forces in micro ball-end milling of NAK80 steel with wear-varying cutting edge and associated nonlinear process characteristics", International Journal of Mechanical Sciences, Vol. 169, 2020, 105343.
[6] Wojciechowski, M. Matuszak, B. Powałka, M. Madajewski, R.W. Maruda and G.M. Królczyk,"Prediction of cutting forces during micro end milling considering chip thickness accumulation", International Journal of Machine Tools and Manufacture, Vol. 147, 2019, 103
[7] Koenigsberger, F. and A. J. P. Sabberwal, "An investigation into the cutting force pulsations during milling operations", International Journal of Machine Tool Design and Research,Vol. 1, No.1, 1961 pp. 15-33.
[8] S. Jayaram, S. G. Kapoor, and R. E. DeVor,"Estimation of the specific cutting pressures for mechanistic cutting force models", International Journal of Machine Tools and Manufacture, Vol. 41, No. 2, 2001, pp. 265-281.
[9] M. K. Dikshit, A. B. Puri and A. Maity, "Analysis of cutting force coefficients in high-speed
ball end milling at varying rotational speeds", Mach. Sci. Technol, Vol. 21, 2017, pp. 416–435.
[10] R. Zhu, S.G. Kapoor, and R.E. DeVor,"Mechanistic modeling of the ball end milling process for multi-axis machining of free-form surfaces", Manufacturing Science and Engineering, Vol. 123, No. 3, 2001, pp. 369-379.
[11]I. Lazoglu, "Sculpture surface machining: a generalized model of ball-end milling force", International Journal of Machine Tools and Manufacture, Vol. 43, No. 5, 2003, pp. 453-462.
[12] S. Wojciechowski, and et al.,"Modeling of cutter displacements during ball end milling of inclined surfaces", Archives of Civil and Mechanical Engineering,Vol. 15, No. 4, 2015, pp. 798-805.
 [13] E. Budak, Y. Altintas, and E.J.A. Armarego, "Prediction of milling force coefficients from orthogonal cutting data", Manufacturing Science and Engineering, Vol. 118, No. 2, 1996, pp. 216-224.
[14] T. Bailey and et al.,"Generic simulation approach for multi-axis machining", Manufacturing Science and Engineering, Vol. 124, No. 3, 2002, pp. 624-642.
[15] G. Yucesan and Y. Altintas, "Prediction of ball end milling forces", ASME Journal of Engineering for Industry, Vol. 118, No. 1, 1996, pp. 95–103.
[16] P. Lee, and Y. Altintaş, "Prediction of ball-end milling forces from orthogonal cutting data", International Journal of Machine Tools and Manufacture, Vol. 36, No. 9, 1996, pp. 1059-1072.
[17]S. Engin, and Y. Altintas, "Mechanics and dynamics of general milling cutters: Part I: helical end mills", International Journal of Machine Tools and Manufacture, Vol. 41, No. 15, 2001, pp. 2195-2212.
[18] M. A. Rubeo, and T.L. Schmitz, "Milling Force Modeling: A Comparison of Two Approaches", Procedia Manufacturing, Vol. 5, 2016, pp. 90-105.
[19] H. Wan, H., Wang, J., Zhang, J., Tao, K., and Wu, D.,"Identification and analysis of cutting force coefficients in the helical milling process", Advanced Mechanical Design, Systems, and Manufacturing, Vol. 14, 2020, Paper No.19-00395
[20]S. Engin, and Y. Altintas, "Mechanics and dynamics of general milling cutters: Part II: inserted cutters", International Journal of Machine Tools and Manufacture, Vol. 41, No. 15, 2001, pp. 2213-2231.
[21] J. Gradišek, M. Kalveram, and K. Weinert, "Mechanistic identification of specific force coefficients for a general end mill",. International Journal of Machine Tools and Manufacture, Vol. 44, No. 4, 2004, pp. 401-414.
 [22] S. Campocasso, J.P. Costes, G. Fromentin, S. Bissey-Breton and G. Poulachon, "A generalised geometrical model of turning operations for cutting force modelling using edge discretisation", Applied Mathematical Modelling, Vol. 39, No. 21, 2015 , pp. 6612-6630.
[23] R. Kountanya, C. Guo and D. Viens, "Time-averaged and Instantaneous Mechanistic Models using Artificial Force Synthesis in Helical End Milling", Procedia Manufacturing, Vol. 10, 2017, pp. 737-749.
[24] G. Yucesan, Q. Xie, and A.E. Bayoumi, "Determination of process parameters through a mechanistic force model of milling operations", International Journal of Machine Tools and Manufacture, Vol. 33, No. 4, 1993, pp. 627-641.