ارزیابی بهنگام آسیب‌پذیری خطوط در برابر رخداد خرابی آبشاری با استفاده از یک مدل پایش هوشمند

نوع مقاله : مقاله برق

نویسندگان

1 عضو هیات علمی گروه مهندسی برق- دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

2 دانشگاه کردستان

3 دانشگاه علم و صنعت ایران

چکیده

در این مقاله، یک مدل هوشمند برای انجام ارزیابی بهنگام آسیب‌پذیری خطوط با رویکرد تحلیل حالت خاموشی سراسری شبکه پیشنهاد می‌شود. در این راستا، مسئله به صورت نگاشت بین شرایط بهره‌برداری نرمال و آسیب‌پذیری خطوط تعریف می‌شود و از الگویتم شبکه عصبی به دلیل توانایی آن در ایجاد نگاشت غیرخطی و قابلیت پیش‌بینی مناسب، در مدل پیشنهادی استفاده می‌شود. شبکه عصبی در مدل پایش هوشمند، شرایط بهره‌برداری را به عنوان بردار ورودی دریافت می‌کند و معیار آسیب‌پذیری هر خط را به عنوان بردار خروجی ارائه می کند و با ایجاد نگاشتی غیر خطی، ارزیابی را در مورد آسیب‌پذیری خطوط انجام می‌دهد. نتایج عددی حاصل از بررسی عملکرد مدل مبتنی بر هوش مصنوعی برروی شبکه نمونه 39 و 118 شینه و مقایسه آن با مدل تحلیلی از نقطه نظر دقت و سرعت، حاکی از کارایی مدل پیشنهادی در ارزیابی بهنگام آسیب پذیری خطوط است. استفاده از مدل پیشنهادی باعث افزایش درک کلی بهره‌بردار از تاثیرگذاری هر خط در انتشار رخداد خرابی آبشاری و در نهایت باعث افزایش امنیت و قابلیت اطمینان در بهره‌برداری بهنگام شبکه انتقال خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Real time Vulnerability Assessment in Cascading Failure Analysis Using an Intelligence Monitoring Model

نویسندگان [English]

  • Ali Hesami Naghshbandy 1
  • Saber Armaghani 2
  • S. Mohammad Shahrtash 3
1 Department of Electrical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran.
2 University of Kurdistan, Sanandaj
3 Iran University of Science & Technology
چکیده [English]

In this paper, A measurement-based model is proposed to assess the vulnerability of the transmission line under overloaded cascading blackout analysis in the power system online operation environment. The proposed Measurement-based model is constructed by the Artificial Neural Network due to its ability in nonlinear mapping between input and output vectors that its ability causes a suitable prediction. The Artificial Neural Network Training data set is provided by using analytical vulnerability assessment model in different operational condition to rank and obtain vulnerability status of each transmission line. Then, Arterial Neural Network links between operating conditions as the input vector and the vulnerability value of each transmission line as the output vector. The efficiency of the proposed measurement-based model in terms of speed and accuracy is investigated in the IEEE 39-, and IEEE 118-bus test case systems by comparing it to an analytical vulnerability assessment model. Finally, the security and reliability of the transmission network are enhanced by increasing the online situational awareness of the operator about the effects of each transmission line in propagating the cascading failure by using the proposed model.

کلیدواژه‌ها [English]

  • Cascading Failure Analysis
  • Multi-criteria Vulnerability Index
  • Freed Forward Multi-layer Artificial Neural Network
  • Online Vulnerability Assessment
 
[1] A. Wang, Y. Luo, G. Tu, and P. Liu, “Vulnerability assessment scheme for power system transmission networks based on the fault chain theory” Transactions on Power Systems, Vol. 26, No. 1, pp. 442-450, 2011.
[2] C. Luo, J. Yang, Y. Sun, J. Yan, and H. He, "Identify critical branches with cascading failure chain statistics and hypertext-induced topic search algorithm", Power and Energy Society General Meeting, 2017 IEEE; pp.1-5, 2017.
[3] علی حسامی نقشبندی، صابر ارمغانی و سید محمد شهرتاش " حل مسئله‌ طرح توسعه‌ شبکه‌ انتقال به‌منظور کاهش اثرات نامطلوب خرابی آبشاری با رویکرد تحلیل و ارزیابی آسیب‌پذیری شبکه‌های انتقال"، نشریه مدل‌سازی در مهندسی، دوره 17، شماره 58، پاییز1398، صفحه 12-12.
[4] S. Armaghani, A. H. Naghshbandy, and S. M. Shahrtash, "A novel multi-stage adaptive transmission network expansion planning to countermeasure cascading failure occurrence", International Journal of Electrical Power and Energy Systems. Vol. 115, pp. 1-14, 2020.
[5] W. Ju, K. Sun, and J. Qi, “Multi-layer interaction graph for analysis and mitigation of cascading outages” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 7, No. 2, pp. 239-249, 2017.
[6] J. Yan, Y. Tang, H. He, and Y. Sun, “Cascading failure analysis with DC power flow model and transient stability analysis” IEEE Transactions on Power Systems, Vol. 30, No. 1, pp. 285-297, 2015.
[7] YC. Lai, AE. Motter, and T. Nishikawa, “Complex Network”, Springer, Berlin, Heidelberg, pp. 299-310, 2004.
[8] X. Wei, S. Gao, T. Huang, E. Bompard, R. Pi, and T. Wang, “Complex Network Based Cascading Faults Graph for the Analysis of Transmission Network Vulnerability” IEEE Transactions on Industrial Informatics, Vol. 15, No. 3, pp. 1265-1276, 2019.
[9] X. Wei, J. Zhao, T. Huang, and E. Bompard “A novel cascading faults graph based transmission network vulnerability assessment method” IEEE Transactions on Power Systems, Vol. 33, No. 3,pp. 2995-3000, 2017.
[10] محمد حسین ولایتی، نیما امجدی و سید احمد حسینی، " ارزیابی قابلیت ضریب مشارکت ژنراتورها به منظور تعیین نوع نوسانات سیگنال کوچک سیستم قدرت با استفاده از روشهای تحلیلی وپیش‌بینی همزمان آنها با استفاده از شبکه عصبی"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 42، پاییز1394، صفحه 119-133.
[11] عیسی خواجه‌وندی، نیما امجدی و محمد حسین ولایتی " پیش‌بینی وضعیت بهره‌برداری سیستم قدرت با در نظر گرفتن حد راکتیو ژنراتورها و حد دینامیکی پایداری ولتاژ با استفاده از شبکه عصبی "، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 51، زمستان1396، صفحه 341-350.
[12] M. Lekshmi, and MS. Nagaraj, “InIntelligent and Efficient Electrical Systems”, Springer, Singapore, pp. 215-224, 2018.
[13] T. Wang, T. Bi, H. Wang, and J. Liu, “Decision tree based online stability assessment scheme for power systems with renewable generations”, CSEE Journal of Power and Energy Systems, Vol. 1, No. 2, pp. 53-61, 2015.
[14] J. Geeganage, UD. Annakkage, T. Weekes, and BA. Archer, “Application of energy-based power system features for dynamic security assessment”, IEEE Transactions on Power Systems, Vol. 30, No. 4, pp. 1957-1965, 2014.
[15] R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, and S. Mei, “A multi-timescale quasi-dynamic model for simulation of cascading outages”, IEEE Transactions on Power Systems, Vol. 31, No. 4, pp.3189-3201, 2016.
[16] M. He, J. Zhang, and V. Vittal, “Robust online dynamic security assessment using adaptive ensemble decision-tree learning”, IEEE Transactions on Power systems, Vol. 28, No. 4, pp. 4089-4098, 2013.
[17] J. Yan, Y. Tang, H. He, and Y. Sun, "Cascading failure analysis with DC power flow model and transient stability analysis", IEEE Transactions on Power Systems, Vol.30, No.1, pp.285-297, 2015.
[18] A. Moeini, I. Kamwa, M. de Montigny, and L. Lenoir, "Application of Battery Energy Storage for network vulnerability mitigation", Transmission and Distribution Conference and Exposition (T&D), 2016 IEEE/PES May 2016.
[19] S. Mei, Y. Ni, G. Wang, and S. Wu, "A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin", IEEE Transactions on Power Systems, Vol. 23, No. 4, pp. 1719-1726, 2008.
[20] T. S. Sidhu and C. Lan, “Contingency screening for steady-state security analysis by using FFT and artificial neural networks”, IEEE Transactions on Power Systems, Vol. 15, No. 1, pp. 421–426, 2000.
[21] Matpower, HomePage, Online: “www.Pserc.cornell.edu/matpower”.
[22] S. Cole, and R. Belmans, “Matdyn, a new Matlab-based toolbox for power system dynamic simulation” IEEE Transactions on Power Systems, Vol. 26, No. 3, pp. 1129-1136, 2011.
[23] A Pai, “Energy function analysis for power system stability”, Springer Science and Business Media; 1th ed., Germany, 2012.
systems/ ieee-118-bus-modified-test-system.
[25] Available at: http://www.motor.ece.itt.edu/data/SCUC_118test.xls.